

## (Autonomous)

Affiliated to Periyar University, Salem.

Accredited by NAAC with 'A' Grade & Recognized u/s 2(f) and 12(B) of the UGC Act 1956

Kalippatti – 637 501, Namakkal (Dt), Tamil Nadu.

#### DEPARTMENT OF PHYSICS

## Number of Courses Focusing on Employability/ Entrepreneurship/ Skill Development

Programme: M.Sc. PHYSICS

| S.No. | Year      | Total No. of<br>Courses | Employability (1) | Entrepreneurship (2) | Skill<br>development<br>(3) | Total No. of<br>Courses<br>(1+2+3) |
|-------|-----------|-------------------------|-------------------|----------------------|-----------------------------|------------------------------------|
| 1     | 2020-2021 | 27                      | 7                 | -                    | 2                           | 9                                  |
| 2     | 2019-2020 | 14                      | 4                 | -                    |                             | 4                                  |
| 3     | 2018-2019 | 22                      | 6                 | _                    | 1                           | 7                                  |
| 4     | 2017-2018 | 22                      | 6                 | -                    | 1                           | 7                                  |
| 5     | 2016-2017 | 12                      | 4                 | -                    | 1                           | 5                                  |

Head of the Department

Dr. V. HARIHARAN, M.Sc., M.Phil., Ph.D., Asst. Professor & Head, Department of Physics, Mahendra Arts & Science College, Kalipatti-637 501. PRINCIPAL SCIENCE COLLEGE

AAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)

Kalippatti (PO) - 637 501, Namakkal (DT

PRINCIPAL
AAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)

(Autonomous)

(alippatti (PO) - 637 501, Namakkal (DT)

(Autonomous)

Affiliated to Periyar University, Salem.

Accredited by NAAC with 'A' Grade & Recognized u/s 2(f) and 12(B) of the UGC Act 1956

Kalippatti – 637 501, Namakkal (Dt), Tamil Nadu.

#### DEPARTMENT OF PHYSICS

List of Courses Focusing on Employability/ Entrepreneurship/ Skill Development (Regulations – 2019)

Programme: M.Sc. PHYSICS

| S.No. | Course Name                               | Course<br>Code | Employability | Entrepreneurship | Skill<br>development |
|-------|-------------------------------------------|----------------|---------------|------------------|----------------------|
| 1.    | Energy Physics                            | M19PPHE11      | ✓             | -                | ✓                    |
| 2.    | Medical Physics                           | М19РРНЕ08      | <b>√</b>      | -                | ✓                    |
| 3.    | Opto Electronics                          | М19РРНЕ09      | ✓             | -                | ✓                    |
| 4.    | Classical Mechanics                       | M19PPH01       | <b>√</b>      | -                | -                    |
| 5.    | Electronics                               | M19PPH03       | ✓             | -                | <b>=</b> 0           |
| 6.    | Optics And Laser Physics                  | M19PPH04       | <b>√</b>      | -                | -                    |
| 7.    | Elements Of Nanoscience<br>And Technology | М19РРНЕ02      | ✓             | -                | -                    |
| 8.    | Statistical Mechanics                     | M19PPH09       | ✓             | -                | -                    |
| 9.    | Nano Physics                              | М19РРНЕ07      | ✓             | -                | -                    |

Head of the Department

Dr. V. HARIHARAN, M.Sc., M.Phil., Ph.D., Asst. Professor & Head, Department of Physics, Mahendra Arts & Science College, Kalipatti-637 501. PRINCIPAL

PRINCIPAL
MAHENDRA ARTS & SCIENCE COLLI
(Autonomous)

(Autonomous)

Kalippatti (PO) - 637 501, Namakkal (DT

(Autonomous)

Affiliated to Periyar University, Salem.

Accredited by NAAC with 'A' Grade & Recognized u/s 2(f) and 12(B) of the UGC Act 1956

Kalippatti – 637 501, Namakkal (Dt), Tamil Nadu.

#### **DEPARTMENT OF PHYSICS**

List of Courses Focusing on Employability/ Entrepreneurship/ Skill Development (Regulations – 2019)

Programme: M.Sc. PHYSICS

| S.No. | Name of the Course                        | Course Code | Employability/<br>Entrepreneurship/ Skill<br>development | Year of introduction (during the last five years) |
|-------|-------------------------------------------|-------------|----------------------------------------------------------|---------------------------------------------------|
| 1.    | Energy Physics                            | М19РРНЕ11   | Employability & Skill Development                        | 2019 - 2020                                       |
| 2.    | Medical Physics                           | М19РРНЕ08   | Employability & Skill Development                        | 2019 - 2020                                       |
| 3.    | Opto Electronics                          | М19РРНЕ09   | Employability & Skill Development                        | 2019 - 2020                                       |
| 4.    | Classical Mechanics                       | M19PPH01    | Employability                                            | 2019 - 2020                                       |
| 5.    | Electronics                               | M19PPH03    | Employability                                            | 2019 - 2020                                       |
| 6.    | Optics And Laser Physics                  | M19PPH04    | Employability                                            | 2019 - 2020                                       |
| 7.    | Elements Of Nanoscience<br>And Technology | М19РРНЕ02   | Employability                                            | 2019 - 2020                                       |
| 8.    | Statistical Mechanics                     | M19PPH09    | Employability                                            | 2019 - 2020                                       |
| 9.    | Nano Physics                              | М19РРНЕ07   | Employability                                            | 2019 - 2020                                       |

Head of the Department

Dr. V. HARIHARAN, M.Sc., M.Phil., Ph.D., Asst. Professor & Head, Department of Physics, Mahendra Arts & Science College, Kalipatti-637 501. PRINCIPAL

AHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)

Kalippatti (PO) - 637 501, Namakkal (DT)

PRINCIPAL
AHENDRA ARTS & SCIENCE COLLEG
(Autonomous)
Kalippatti (PO) - 637 501, Namakkal (DT)

(AUTONOMOUS)

(Affiliated to Periyar University)
[Accredited by NAAC "A" Grade & Recognized u/s 2(f) and 12(B) of the UGC act 1956] KALIPPATTI-637501.



#### MASTER OF SCIENCE

SYLLABUS FOR

M.Sc. PHYSICS

**OUTCOME BASED EDUCATION - CHOICE BASED CREDIT SYSTEM** 

FOR THE STUDENTS ADMITTED FROM THE ACADEMIC YEAR 2019 - 2020 ONWARDS



# (Autonomous) (Affiliated to Periyar University) Department of PHYSICS

#### M.Sc. PHYSICS

#### **PREAMBLE**

The PG & Research Department of Physics offers programs in conventional Physics to a broad range of students through creative and learning and teaching methodology which enables them to integrate this knowledge into their normal thought processes. Also, The department provides a forward-looking curriculum to undergraduate Physics majors, involving not only conventional Physics topics but also state-of-the-art instruction through Theory and Practical experimental techniques. On the other hand, computational and theoretical Physics with computers for data acquisition and analysis, as well as active involvement in professional research.

#### I - PROGRAMME EDUCATIONAL OBJECTIVES:

- ➤ Technical Proficiency: Obtaining successful employment to their respective interests, education and to become socially responsible physicist
- ➤ Professional growth: Developing life long learning, higher education and research in their respective areas of specialization
- ➤ Management growth: Improving leadership quality through innovative manner

#### II - PROGRAMME OUTCOMES:

- **Knowledge:** has substantial knowledge in physics and basic knowledge in mathematics along with advanced knowledge in some areas in physics
- > <u>Skill:</u> can combine and use knowledge from several disciplines and independently assess and evaluate research methods and results
- ➤ <u>General competence:</u> has the ability to successfully carry out advanced tasks and projects, both independently and in collaboration with others, and also across disciplines

#### **III - REGULATIONS**

These regulations shall take effect from the academic year 2019-2020, i.e, for students who are to be admitted to the first year of the course during the academic year 2019-20 and thereafter.

These regulations shall take effect from the academic year 2019-2020, i.e, for students who are to be admitted to the first year of the course during the academic year 2019-20 and thereafter.

#### 1. Objectives of the Course:

- ➤ To create socially responsible citizens with sound scientific background
- > To involve the students to familiar with various platforms of the Physics
- > To allow the students to enrich their knowledge toward research and development

#### 2. Eligibility for Admission:

A Candidate who has passed the B.Sc degree examination with Physics as the main subject or B. Sc applied Physics or B. Sc Physics (Vocational) of this university or an examination of some other universities accepted by the syndicate as equivalent thereto.

#### 3. Duration of the Course:

The candidates shall complete all the courses of the programme in 2 years from the date of admission. The programme of study shall consist of four semesters and a total period of two years with a minimum of 90 credits. The programme of study will comprise the course according to the syllabus.

#### 4. Course of Study:

The course of study for the PG degree courses of all branches shall consist of the following:

- (i) Core courses
- (ii) Electives courses
- (iii) Skill Enhancement Courses
- (iv) Extra Disciplinary Course
- (v) Project
- (vi) Enhancement Compulsory Courses.

#### 5. Examinations

The course of study shall be based on semester pattern with Internal Assessment under Choice Based Credit System.

The examinations for all the papers consist of both Internal (Continuous Internal Assessment - CIA) and External (End Semester) theory examinations. The theory examinations shall be conducted for three hours duration at the end of each semester. The candidates failing in any subjects(s) will be permitted to appear for the same in the subsequent semester examinations

## **6. Structure of the Programme:**

#### **SEMESTER: I**

| Course               | Title of the                                         | Course    | Hr<br>We |   | No. of  | M    | lax. M | ark   |
|----------------------|------------------------------------------------------|-----------|----------|---|---------|------|--------|-------|
| Category             | Course                                               | Code      | L        | P | Credits | Int. | Ext.   | Total |
| CORE –I              | CLASSICAL<br>MECHANICS                               | М19РРН01  | 5        | - | 4       | 25   | 75     | 100   |
| CORE –II             | MATHEMATICAL<br>PHYSICS – I                          | М19РРН02  | 6        | - | 4       | 25   | 75     | 100   |
| CORE –III            | ELECTRONICS                                          | M19PPH03  | 5        | - | 4       | 25   | 75     | 100   |
| CORE –IV             | OPTICS AND<br>LASER<br>PHYSICS                       | M19PPH04  | 5        | - | 4       | 25   | 75     | 100   |
| ELECTIVE – I         | ELECTIVE –I                                          | -         | 5        | - | 4       | 25   | 75     | 100   |
| CORE<br>PRACTICAL- I | PRACTICAL-I<br>GENERAL<br>PHYSICS<br>EXPERIMENTS - I | М19РРНР01 | -        | 4 | 3       | 40   | 60     | 100   |
|                      | Total                                                |           | 26       | 4 | 23      | 165  | 435    | 600   |

#### **SEMESTER: II**

| Course                | Title of the                                | Course    | Hr:<br>We |   | No. of  | Max. Mark |            |       |
|-----------------------|---------------------------------------------|-----------|-----------|---|---------|-----------|------------|-------|
| Category              | Course                                      | Code      | L         | P | Credits | Int.      | Ext.       | Total |
| CORE –V               | MATHMATICAL<br>PHYSICS –II*                 | М19РРН05  | 5         | - | 4       | 25        | 75         | 100   |
| CORE –VI              | QUANTUM<br>MECHANICS- I                     | М19РРН06  | 5         | - | 4       | 25        | <i>7</i> 5 | 100   |
| CORE -VII             | MICROPROCESS<br>OR AND MICRO<br>CONTROLLER  | М19РРН07  | 5         | - | 4       | 25        | 75         | 100   |
| ELECTIVE –II          | ELECTIVE –II                                | -         | 5         | - | 4       | 25        | 75         | 100   |
| CORE<br>PRACTICAL –II | PRACTICAL- II<br>ELECTRONICS<br>EXPERIMENTS | М19РРНР02 | -         | 4 | 3       | 40        | 60         | 100   |
| EDC                   | -                                           |           | 4         | - | 4       | 25        | 75         | 100   |
| ECC                   | HUMAN RIGHTS                                | -         | 2         | - | 2       | 25        | 75         | 100   |
|                       | COMPREHENSIVE<br>EXAM - I                   | _         |           |   | 1       | _         | -          | 100   |
|                       | Total                                       |           | 26        | 4 | 26      | 190       | 510        | 800   |

<sup>\*</sup> Open Book Examination Pattern

#### **SEMESTER: III**

| Course                 | Title of the Course Code Hrs / Week                       |           |    | No. of<br>Credits | Max. Mark |      |            |       |
|------------------------|-----------------------------------------------------------|-----------|----|-------------------|-----------|------|------------|-------|
| Category               | Course                                                    | Code      | L  | P                 | Credits   | Int. | Ext.       | Total |
| CORE –VIII             | QUANTUM<br>MECHANICS – II                                 | М19РРН08  | 6  | -                 | 4         | 25   | <i>7</i> 5 | 100   |
| CORE –IX               | STATISTICAL<br>MECHANICS                                  | М19РРН09  | 5  | -                 | 4         | 25   | 75         | 100   |
| CORE –X                | COMPUTATIONAL<br>METHODS AND<br>PROGRAMMING               | М19РРН10  | 5  | -                 | 4         | 25   | 75         | 100   |
| CORE –XI               | ELECTRO<br>MAGNECTIC<br>THEORY                            | M19PPH11  | 5  | -                 | 4         | 25   | 75         | 100   |
| ELECTIVE – II          | ELECTIVE –III                                             | -         | 5  | -                 | 4         | 25   | 75         | 100   |
| CORE<br>PRACTICAL- III | PRACTICAL - III<br>GENERAL<br>PHYSICS<br>EXPERIMENTS – II | М19РРНР03 | -  | 4                 | 3         | 40   | 60         | 100   |
|                        | Total                                                     |           | 26 | 4                 | 23        | 165  | 435        | 600   |

#### **SEMESTER: IV**

| Course                | Title of the                                                                | Course     | Hrs /<br>Week |   | No. of  | Max. Mark |      |       |
|-----------------------|-----------------------------------------------------------------------------|------------|---------------|---|---------|-----------|------|-------|
| Category              | Course                                                                      | Code       | L             | P | Credits | Int.      | Ext. | Total |
| CORE -XII             | CONDENSED<br>MATTER PHYSICS                                                 | M19PPH12   | 5             | - | 4       | 25        | 75   | 100   |
| CORE -XIII            | NUCLEAR AND<br>PARTICLE<br>PHYSICS                                          | М19РРН13   | 5             | - | 4       | 25        | 75   | 100   |
| CORE -XIV             | SPECTROSCOPY*                                                               | M19PPH14   | 5             | - | 4       | 25        | 75   | 100   |
| ELECTIVE -IV          | ELECTIVE –IV                                                                | -          | 5             | - | 4       | 25        | 75   | 100   |
| CORE<br>PRACTICAL -IV | PRACTICAL - IV<br>MICROPROCESSO<br>R AND<br>MICROCONTROLL<br>OR EXPERIMENTS | М19РРНР04  | -             | 4 | 3       | 40        | 60   | 100   |
|                       | PROJECT                                                                     | M19PPHPR01 | -             | 4 | 3       | 40        | 60   | 100   |
|                       | COMPREHENSIVE<br>EXAM - II                                                  |            |               |   | 1       | _         | -    | 100   |
|                       | Total                                                                       |            | 22            | 8 | 23      | 180       | 420  | 700   |

<sup>\*</sup> Open Book Examination Pattern

## Summary of Credits, Hours and Marks Distribution

| C               |    | Cre | dits |    | Total   | Total | No. of  | Max.  |
|-----------------|----|-----|------|----|---------|-------|---------|-------|
| Course Category | I  | II  | III  | IV | Credits | Hours | Courses | Marks |
| Core            | 16 | 12  | 16   | 12 | 56      | 70    | 14      | 1400  |
| Elective        | 4  | 4   | 4    | 4  | 16      | 20    | 4       | 400   |
| SEC             | -  | -   | -    | -  | -       | -     | -       | -     |
| EDC             | -  | 4   | -    | -  | 4       | 4     | 1       | 100   |
| Practical       | 3  | 3   | 3    | 3  | 12      | 16    | 4       | 400   |
| Project         | ı  | ı   | -    | 3  | 3       | 4     | 1       | 100   |
| Human Rights    | ı  | 2   | -    | -  | 2       | 2     | 1       | 100   |
| Online course   |    |     |      |    | 2       |       |         | 200   |
| TOTAL           |    |     |      |    | 95      | 120   | 25      | 2700  |

## **ELECTIVE SUBJECTS FOR M.Sc. Physics STUDENTS**

| Semester | ELECTIVE – I                           |             |
|----------|----------------------------------------|-------------|
|          | Course Title                           | Course Code |
| T        | X Ray Crystallography and Biophysics   | M19PPHE01   |
| I        | Elements of NanoScience and Technology | M19PPHE02   |
|          | Crystal And Characterization           | М19РРНЕ03   |
|          | ELECTIVE – II                          | •           |
|          | Course Title                           | Course Code |
| 11       | Thin film Physics                      | M19PPHE04   |
| II       | Ultrasonics and its applications       | M19PPHE05   |
|          | Non Linear Dynamics                    | М19РРНЕ06   |
|          | ELECTIVE – III                         |             |
|          | Course Title                           | Course Code |
|          | Nano Physics                           | M19PPHE07   |
| III      | Medical Physics                        | M19PPHE08   |
|          | Opto Electronics                       | M19PPHE09   |
|          | ELECTIVE – IV                          |             |
|          | Course Title                           | Course Code |
| IV       | Characterization of materials          | M19PPHE10   |
|          | Energy physics                         | M19PPHE11   |
|          | Communication Electronics              | M19PPHE12   |

#### IV SCHEME OF EXAMINATION:

#### 1. Question Paper Pattern for Theory Papers

Time: Three Hours Maximum Marks: 75

Part A:  $(10 \times 1 = 10)$ 

Answer ALL Questions

(Objective Type - Two Questions from each unit)

Part B:  $(5 \times 2 = 10)$ 

Answer ALL Questions

(One Question from each unit)

Part C:  $(5 \times 5 = 25)$ 

Answer ALL Questions

(One Question from each unit with internal choice)

Part D:  $(3 \times 10 = 30)$ 

Answer Any Three out of Five Questions

(One Question from each unit)

#### 2. Question Paper Pattern for Practical Papers

EXTERNAL MARK: 60

**INTERNAL MARK: 40** 

#### 3. Distribution of Marks:

The following are the distribution of marks for external and internal for End Semester Examinations and continuous internal assessment and passing minimum marks for Theory/Practical / Mini project / Project papers of PG programmes.

| ESE          | EA<br>Total | Passing<br>Minimum<br>for EA | CIA<br>Total | Passing<br>Minimum<br>for CIA | Total<br>Marks<br>Allotted | Passing<br>Minimum<br>(ESE) |
|--------------|-------------|------------------------------|--------------|-------------------------------|----------------------------|-----------------------------|
| Theory       | 75          | 38                           | 25           | 12                            | 100                        | 50                          |
| Practical    | 60          | 30                           | 40           | 20                            | 100                        | 50                          |
| Mini Project |             |                              | 100          | 50                            | 100                        | 50                          |
| Project      | 60          | 30                           | 40           | 20                            | 100                        | 50                          |

#### **THEORY**

**EVALUATION OF INTERNAL ASSESSMENT** 

Test : 10 Marks Seminar : 05 Marks Assignment : 05 Marks Attendance : 05 Marks

Total: 25 Marks

The Passing minimum shall be 50% out of 25 marks (13 marks)

#### **PRACTICAL**

**EVALUATION OF INTERNAL ASSESSMENT** 

Test 1 : 15 Marks Test 2 : 15 Marks Record : 10 Marks

Total : 40 Marks

The Passing minimum shall be 50% out of 40 marks (20 Marks)

#### **PROJECT**

**EVALUATION OF INTERNAL ASSESSMENT** 

Review 1 : 10 Marks
Review 2 : 5 Marks
Review 3 : 5 Marks
Pre-Viva : 5 Marks

Total : 25 Marks

The Passing minimum shall be 50% out of 40 marks (20 marks)

#### 4. Passing Minimum:

The Candidates shall be declared to have passed the examination if he/she secures not less than 50 marks in total (CIA mark + Theory Exam mark) with minimum of 38 marks in the End Semester Theory Examinations.

The Candidates shall be declared to have passed the examination if he/she secures not less than 50 marks in total (CIA mark + Practical Exam mark) with minimum of 30 marks in the End Semester Practical Examinations.

#### 5. Submission of Record Note Books for Practical Examinations

Candidates appearing for practical examinations should submit a bonafide record note books prescribed for practical examinations. The candidates failed to submit the record book shall not be permitted to appear for the practical examinations

#### 6. Project

The following guidelines to be followed for the Project with Viva-voce:

- 1. The project should be valued for 60 marks by an external examiner; however the Viva-Voce examination should be conducted by both the external examiner appointed by the College and the internal examiner / guide/ teacher concerned.
- 2. The Project Report may consist a minimum of 60 pages.
- 3. The candidate has to submit the Project Report 20 days before the commencement of the VI Semester Examinations.
- 4. A candidate who fails in the Project/Dissertation or is absent may resubmit the report, on the same topic, with necessary modification / correction / improvements in the subsequent Even Semester Examinations for evaluation and shall undergo viva-voce Examination.

#### 7. Note

#### a) SWAYAM / MOOC - Free Online Education

SWAYAM / MOOC are an instrument for self-actualization providing opportunities for a life-long learning. Here the student can choose from hundreds of courses, virtually every course taught at the college level, offered by the best teachers in India and elsewhere.

The students can choose an online SWAYAM / MOOC course during their period of study which will earn an extra credit and it will be transferred to the academic records of the students.

#### b) Comprehensive Examination

This examination will be conducted at the end of each academic year. Mode of the examination will be online (Computer based test). The pattern of questions will be objective type and covers the entire syllabi.

#### c) Open Book Examination

The examinees are allowed to make use of their class notes, textbooks, and other approved materials (Except Electronic Gadgets) while answering questions.

#### SEMESTER I

| CORE - 1   | M.Sc- PHYSICS  | 2019 - 2020 |
|------------|----------------|-------------|
| M19PPH01   | CLASSICAL MECH | IANICS      |
| CREDITS: 4 | CDASSICAL MECH |             |

#### **Objectives**

The present course titled "Classical Mechanics" completely deals about the Newtonian Mechanics in association with Lagrangian, Hamiltonian, etc., which will be helpful to understand the Physical laws.

#### **Course outcomes**

On the successful completion of the course, students will be able to

| СО  | Statement                                                                             | Knowledge<br>Level |
|-----|---------------------------------------------------------------------------------------|--------------------|
| CO1 | Remember Newtonian laws                                                               | K1                 |
| CO2 | Understand Lagrangian and Hamiltonian<br>Principle                                    | K2                 |
| СОЗ | Analyze Poisson's Brackets & Hamilton-<br>Jacobi Theory                               | КЗ                 |
| CO4 | Apply studied theories for various applications such as statics and dynamical systems | K4                 |

#### Unit -I Lagrangian Formulation

Limitation of Newton's method –Centre of Mass- Mechanics of system of Particles- Constraints- Generalized co-ordinates- D'Alembert's principle and Lagrangian equation of motion for the monogenic system with holonomic constrains –and with non-holonomic constraints – variational principles and Lagrangian equation for holonomic and non-holonomic systems-Simple application-Double pendulum –Atwood's machine- Bead sliding on rotating wire in a force.

#### Unit -II Hamiltonian Formulation

Legendre transformations and the Hamilton's equations of motion -Cyclic co-ordinates and Conservation theorems- Deduction of Hamilton's Principle from the D' Alembert's Principle- Deduction of Hamilton's equations from the modified Hamilton's principle-Principle of least action-Canonical transformations.

#### Unit -III Poisson's Brackets & Hamilton-Jacobi Theory

Poisson's Bracket-Liouville's theorem-Hamilton-Jacobi Theory –Action and Angle variables –Kepler's –problem-Simple applications of Hamiltonian dynamics: compound pendulum –two dimensional harmonic oscillator.

#### Unit -IV Small Oscillations and Rigid-body Dynamics

General theory of small oscillation - Lagrange's equation of motion for small oscillation-solution of eigenvalue equation-normal co-ordinates and normal frequencies of vibration.

Euler's angle - Equation of motion of Rigid body -Euler's equationsthe motion of a symmetric top under action of gravity.

#### Unit -V Special Relativity

Lorentz transformation-consequences of Lorentz transformation:-Length contraction: simultaneous, time dilation-Force in relativistic mechanics-Minkowski space and Lorentz transformation-orthogonal transformation-Thomas Precession- four vectors-covariant Lagrangian formulation for a freely moving particle.

#### TEXT BOOKS:

| S.No | Title of the Book   | Author       | Publisher                    | Year of<br>Publication |
|------|---------------------|--------------|------------------------------|------------------------|
| 1    | Classical Mechanics | H.Goldstein  | Narosa Publishing            | 2008                   |
| 2    | Classical Mechanics | V.B. Bhatia  | Narosa Publishing            | 1997                   |
| 3    | Classical Mechanics | J.C. Updhaya | Himalaya Publishing<br>House | 2003                   |

#### **REFERENCE BOOKS:-**

| S.No | Title of the Book      | Author                     | Publisher        | Year of<br>Publication |
|------|------------------------|----------------------------|------------------|------------------------|
| 1    | Classical<br>Mechanics | N.C.Rana and<br>P.S. Joag, | Tata McGraw-Hill | 1991                   |
| 2    | Classical<br>Mechanics | Gupta & Kumar              | Tata McGraw-Hill | 1991                   |

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | M   | S   | M   |
| CO2 | S   | S   | M   |
| CO3 | S   | S   | M   |
| CO4 | M   | M   | S   |

| CORE - 2   | M.Sc- PHYSICS          | 2019- 2020 |  |  |  |
|------------|------------------------|------------|--|--|--|
| M19PPH02   | MATHEMATICAL DI        | AASICG-I   |  |  |  |
| CREDITS: 4 | MATHEMATICAL PHYSICS-I |            |  |  |  |

#### **Objectives**

The present title gives the detailed ideas about matrices and their respective determinants, Laplace, Differential and Fourier series etc. And the extension of the unit will be presented in semester III.

#### **Course outcomes**

On the successful completion of the course, students will be able to

| СО  | Statement                               | Knowledge<br>Level |  |
|-----|-----------------------------------------|--------------------|--|
| CO1 | Remember basic matrix and the           | K1                 |  |
|     | calculation determinants                |                    |  |
| CO2 | Summarize the salvation of differential | K2                 |  |
| 002 | equations                               | 112                |  |
| CO3 | Analyze special differential equations  | КЗ                 |  |
| CO4 | Apply Fourier series and Laplace        | K4                 |  |
| 004 | transforms to various Physical problems | <b>N</b> 4         |  |

#### **Unit-I Matrices and Determinants**

Properties of matrix addition and multiplication – different type of matrices and their properties – Rank of a Matrix and some of its theorems – Solution to linear homogeneous and non homogeneous equations – Cramers rule – eigen values and eigenvectors of matrices – differentiation and integration of matrix.

#### Unit-II Solving of differential equations

Homogeneous linear equations of second order with constant coefficients and their solutions ordinary second order differential with variable coefficients and their solution by power series and Frobenius methods – extended power series method for indicial equations.

#### Unit-III Special differential equations and their solutions

Legendre's differential equation: Legendre polynomials – Generating functions – Recurrence Formulae–Rodrigue's formula–orthogonality of Legendre's polynomial; Bessel's differential equation: Bessel's polynomial – generating functions–Recurrence Formulae–orthogonal properties of Bessel's polynomials– Hermite differential equation– Hermite polynomials – generating functions – recurrence relation.

#### **Unit-IV Laplace Transforms**

Laplace transforms: Linearity property, first and second translation property of LT – Derivatives of Laplace transforms – Laplace transform of integrals – Initial and Final value theorems; Methods for finding LT:direct and series expansion method, Method of differential equation; Inverse Laplace transforms: Linearity property, first and second translation property, Convolution property – Application of LT to differential equations and boundary value problems.

#### Unit-V Fourier series and integrals

Fourier series definition and expansion of a function x – Drichlet's conditions - Assumptions for the validity of Fourier's series expansion and its theorems – Complex representation of Fourier series – problems related to periodic functions – graphical representation of FS – Fourier integrals – convergence of FS – some applications of Fourier transforms.

#### TEXT BOOKS:

| S.No | Title of the Book                  | Author          | Publisher                                                      | Year of<br>Publication |
|------|------------------------------------|-----------------|----------------------------------------------------------------|------------------------|
| 1    | Mathematical Physics               | B.D.Gupta       | (Vikas Publishing<br>House PVT.LTD) 3 <sup>rd</sup><br>Edition | 2006                   |
| 2    | Topics in<br>Mathematical Physics  | H Parthasarathy | H Ane Books Pvt. Ltd                                           | 2007                   |
| 3    | Mathematical methods for physics - | G. Arfken       | Elsevier 6 <sup>th</sup> edition                               | 2010                   |

#### **REFERENCE BOOKS:-**

| S.No | Title of the Book    | Author   | Publisher                 | Year of<br>Publication |
|------|----------------------|----------|---------------------------|------------------------|
|      | Advanced Engineering |          | Wiley Easter              |                        |
| -    | mathematics          | Erwin    | Limited                   | 1993.                  |
|      | mathematics          | Kreyszig | Publications              | 1995.                  |
|      |                      |          | 7 <sup>th</sup> Edition   |                        |
|      | Mathematical Physics |          | Pragati                   |                        |
| 2    | Water and Thysics    | Rajput   | Prakasam 17 <sup>th</sup> | 2004                   |
|      |                      |          | Edition                   |                        |

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | S   | S   | S   |
| CO2 | S   | M   | M   |
| CO3 | M   | S   | S   |
| CO4 | M   | M   | S   |

| CORE - 3   | M.Sc- PHYSICS | 2019– 2020 |  |
|------------|---------------|------------|--|
| M19PPH03   | 3 ELECTRONICS |            |  |
| CREDITS: 4 |               |            |  |

#### **Objectives**

The present course explores the basic ideas about electronics and extends it towards the fabrication of integrated circuits. Also it covers special types of semi conducting materials. It deals about the basic concepts of converts and registers.

#### Course outcomes

On the successful completion of the course, students will be able to

| СО  | Statement                                           | Knowledge<br>Level |
|-----|-----------------------------------------------------|--------------------|
| CO1 | Remember basic concepts of ICs                      | K1                 |
| CO2 | Summarize the principles of semi conducting devices | K2                 |
| CO3 | Analyze the functions of registers and counters     | КЗ                 |
| CO4 | Apply Timers for various applications               | K4                 |

#### **UNIT I: Integrated Circuits**

Integrated Circuits –Types of Integrated Circuits – Analog and Digital Integrated Circuits –Basic monolithic ICs – epitaxial growth – masking – etching impurity diffusion – fabricating monolithic resistors, diodes, transistors, inductors and capacitors – circuit layout – contacts and inter connections –The continuity equation for a diode – Application of the continuity equation for an abrupt PN junction under forward and reverse bias – Einstein equation.

#### **UNIT II: Special Semiconductor Devices**

JFET – Structure and working – VI Characteristics under different conditions – biasing circuits – CS amplifier design – AC analysis – MOSFET – Depletion and Enhancement type MOSFFT – UJT characteristics – relaxation oscillator – SCR characteristics – application in power control – DIAC, TRIAC.

#### **UNIT III: Operational Amplifier and Applications**

Solving simultaneous and differential equations – Voltage to current and current to voltage conversions – active filters: low pass, .high pass, band pass and band rejection filters – Wien bridge, phase shift oscillators – Triangular, saw-tooth and square wave generators – Schmitt's trigger – sample and hold circuits – Voltage control oscillator.

#### **UNIT IV: IC 555 Timer and Applications**

IC 555 Timer – Internal architecture and working – Monostable Operation – Applications in monostable mode – Linear ramp generator – Frequency divider – Astable operation – Applications in astable mode – phase locked loops – Monolithic phase locked loops.

#### **UNIT V: Counters and Converters**

Basic D to A conversion: weighted resister DAC – Binary R-2R ladder DAC – Basic A to D conversion: counter type ADC – successive approximation converter – dual slope ADC – JK flip flop and T flipflop – Counters – 4 bit synchronous and asynchronous counters as up and down counters – BCD counter – Shift registers – serial and parallel shift registers.

#### **BOOKS FOR STUDY AND REFERENCE**

| S.No | Title of the Book                   | Author                          | Publisher                       | Year of<br>Publication |
|------|-------------------------------------|---------------------------------|---------------------------------|------------------------|
| 1    | Active and Nonlinear<br>Electronics | T.F. Schubert and E.M.Kim,      | John Wiley Sons                 | 1996                   |
| 2    | Electronic Devices                  | L. Floyd                        | Pearson Education,<br>New York  | 2004                   |
| 3    | Transitors                          | Dennis Le<br>Crissitte,         | Prentice Hall India<br>Pvt. Ltd | 1963                   |
| 4    | Integrated<br>Electronics           | J. Millman and<br>C.C. Halkias, | McGraw Hill, New<br>Delhi       | 1972                   |

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | S   | M   | S   |
| CO2 | M   | M   | M   |
| CO3 | S   | M   | S   |
| CO4 | M   | S   | M   |

| CORE - 4   | M.Sc - PHYSICS   | 2019 - 2020              |  |  |
|------------|------------------|--------------------------|--|--|
| M19PPH04   | OPTICS AND LASED | OPTIOS AND LASED DINSIOS |  |  |
| CREDITS: 4 | OFFICS AND LASER | OPTICS AND LASER PHYSICS |  |  |

#### **Objectives**

The present title will be helpful academically and industrially to make the students towards the development of optics and technology.

#### Course outcomes

On the successful completion of the course, students will be able to

| со  | Statement                                                 | Knowledge<br>Level |
|-----|-----------------------------------------------------------|--------------------|
| CO1 | Remember optical laws such as reflection and refraction   | K1                 |
| CO2 | Discuss the production and applications of LASER          | K2                 |
| CO3 | Give the difference between linear and non linear optics  | КЗ                 |
| CO4 | Discuss the diffraction phenomenon and their applications | K4                 |

#### **Unit-I Lasers:**

Review of Einstein's coefficients, Light amplification, Spatial and temporal coherence, Threshold condition, Rate equations for 2 and 3 level systems, Laser pumping requirements, Output coupling, Cavity modes, quality factor, Mode selection and mode locking, Q-switching. Some laser systems: He-Ne, Nd:YAG, Dye lasers, Semiconductor lasers.

#### Unit-II Propagation of light in optical media:

Dispersion: dispersion in dilute and dense gases, group and signal velocities. Anisotropic media: Fresnel's equation, uniaxial and biaxial crystals, double refraction, polarizing prisms. Jones vector and linear, circular, elliptic states of polarization, Malus' law, Jones matrices and linear optical devices, phase retarders, quarter and half wave plates, Stokes parameters.

**Unit-III Wave optics:** Interference: Planar wave description of light, two-beam interference, Michelson interferometer, Multi-beam interference, Fabry-Perot interferometer.

**Unit-IV Diffraction:** Kirchhoff's diffraction theory, regimes of diffraction, Fresnel and Fraunhofer diffraction, rectangular slit, circular aperture, single and multiple slit diffraction.

**Unit-IV Non-linear Optics:** Interaction of radiation with a dielectric medium, dielectric susceptibility, Harmonic generation, Second harmonic generation, Phase matching criterion, coherence length for second harmonic radiation, optical mixing, third harmonic generation, self focusing of light, parametric generation of light.

#### **BOOKS FOR STUDY AND REFERENCE**

| S.No | Title of the Book                       | Author                           | Publisher                     | Year of<br>Publication |
|------|-----------------------------------------|----------------------------------|-------------------------------|------------------------|
| 1    | Optical Electronics                     | A. Ghatak and<br>K. Thyagarajan, | Cambridge University<br>Press | 2004                   |
| 2    | Optics – Principles<br>and Applications | K. K. Sharma                     | Academic Press, MA,           | 2006                   |
| 3    | Laser Fundamentals                      | Silfvast,                        | Cambridge Press,              | 1998                   |
| 4    | Principles of Optics                    | Born and Wolf.                   | Cambridge Press,              | 1998                   |

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | M   | S   | S   |
| CO2 | S   | M   | M   |
| CO3 | M   | S   | M   |
| CO4 | M   | M   | M   |

| Elective         | M.Sc- PHYSICS        | 2019- 2020                       |  |  |
|------------------|----------------------|----------------------------------|--|--|
| <b>M19PPHE01</b> | Y-DAV CDVSTALLOCDADH | X-RAY CRYSTALLOGRAPHY BIOPHYSICS |  |  |
| CREDITS: 4       | A-KAI CKISIALLOGKAII | II BIOTITISIES                   |  |  |

#### **Objectives**

The present course titled "X-ray crystallography Bio Physics" completely deal about the concepts of X-ray crystals and diffraction methods in association with Phase problems and understand the Physical laws through data collection.

#### **Course outcomes**

On the successful completion of the course, students will be able to

| СО  | Statement                                                                 | Knowledge<br>Level |
|-----|---------------------------------------------------------------------------|--------------------|
| CO1 | Remember Seven types of crystal systems                                   | K1                 |
| CO2 | Understand the techniques involved in Data Collection                     | K2                 |
| CO3 | Analyze Phase Problem to solve the crystal structure                      | КЗ                 |
| CO4 | Apply studied theories for various applications such as Bio Physics etc., | K4                 |

#### UNIT I: X-ray and crystals

Origin of X-rays – conventional generators-construction and geometry sealed tube- rotating anode generator-choice of radiation-Synchrotron radiation - Lattice planes-Miller indices - X-ray diffraction - Crystal systems and symmetry – unit cell –space lattices- non primitive lattices – point groups-space groups – analysis of space group symbols - Crystallization – growing crystals – choosing a crystals – crystal mounting- alignment – measurement of crystal properties.

#### Unit II: Data collection techniques for single crystals:

Laue method- single crystal diffraction cameras: rotation and Oscillation method – Ewald construction - Single crystal diffractometers: Instrument geometry-crystal in a diffracting position – Datacollection strategy: determination of unit cell – orientation matrix - Intensity Datacollection - Unique data –equivalent reflections –selection of data.

#### **UNIT III: Data Reduction**

Integration of intensity - Lorenz and Polarization corrections - absorption - deterioration or radiation damage - scaling - Interpretation of Intensity. Structure factors and Fourier syntheses: Structure factor - Friedel's Law - exponential and vector form - generalized structure factor - Fourier synthesis -Fast Fourier transform - Anomalous scattering and its effects. Calculation of structure factors and Fourier syntheses.

#### **UNIT IV: Phase Problem**

Methods of solving Phase Problem: Direct methods – Patterson methods – Heavy atom methods. Refinement of crystal structures: Weighting – Refinement by Fouriersyntheses – Locating Hydrogen atoms identification of atom types – least squares –goodness of fit –least square and matrices-correlation coefficients – Relationship between Fourier and Least squares – Practical consideration in least squares methods – Random and systematic errors– Molecular geometry – absolute configuration – thermal motion.

#### UNIT V: Cell organelles and molecules

Basic structure of prokaryotic and eukaryotic cells – mitochondiria and the generation of ATP – Chemical composition of living systems – molecular components of cell – chemical structure of carbohydrate–Lipids-proteins–Nucleic acids–hetro macro molecules.

Molecular interactions: Molecular forces – forces hold macro molecules together – intermolecular weak forces – van der waals – inductive force – dispersion force –Lenard-Jones potential – hydrogen bond – hydrophobic forces – acid, bases and pH,pK, pl and buffering.

#### BOOKS FOR STUDY & REFERENCE:

| S.No | Title of the Book                                   | Author                                  | Publisher                        | Year of<br>Publication |
|------|-----------------------------------------------------|-----------------------------------------|----------------------------------|------------------------|
| 1    | X-ray Structure<br>Determination,                   | Second<br>Edition, Stout<br>and Jensen, | John Wiley<br>Publications.      | 1989                   |
| 2    | Fundamentals of<br>Crystallography                  | C. Giacovazzo,                          | Second Edition,<br>Oxford Press. | 1991                   |
| 3    | Structure Determination by X-ray Crystallography,   | Ladd and<br>Palmer.                     | Second Edition,<br>Oxford Press. | 1998                   |
| 4    | Molecular<br>Biophysics,<br>Structure in<br>motion, | M. Duane,                               | Oxford University<br>Press       | 1994                   |

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | S   | S   | S   |
| CO2 | M   | S   | S   |
| CO3 | S   | M   | S   |
| CO4 | M   | M   | M   |

| Elective   | M.Sc- PHYSICS                           | 2019- 2020 |  |  |  |
|------------|-----------------------------------------|------------|--|--|--|
| M19PPHE02  | ELEMENTS OF MANO SCIENCE AND TECHNOLOGY |            |  |  |  |
| CREDITS: 4 | ELEMENTS OF NANO SCIENCE AND TECHNOLOGY |            |  |  |  |

#### **Objectives**

Bearing in mind the role of the applications of recent technologies The present course deals about the innovations of Nano science and Technology. Also it deals about the Physical and chemical properties of Materials in Nanoscale level.

#### **Course outcomes**

On the successful completion of the course, students will be able to

| СО  | Statement                                                                      | Knowledge<br>Level |
|-----|--------------------------------------------------------------------------------|--------------------|
| CO1 | Remember the differences between chemical and physical properties              | K1                 |
| CO2 | Understand the techniques involved in the synthesis of nanomaterials           | K2                 |
| CO3 | Analyze nanomaterials using various characterization techniques                | КЗ                 |
| CO4 | Apply studied theories for various applications which lying in Nanoscale level | K4                 |

#### **UNIT - I: Basics of Nanotechnology**

Background to Nanotechnology - scientific revolutions - types of nanotechnology and nano machines - atomic structure molecules & phases - molecular and atomic size - surfaces and dimensional space - top down and bottom Nanoscale formation

#### **UNIT - II : Nanocrystals**

Synthesis of metal Nan particles and structures -Background on quantum semiconductors - Background on reverse Miceller Solution - Synthesis of semiconductors - Cadmium telluroid nano crystals - Cadmium sulfide nano crystals - Silver sulfide nano crystals - Nano manipulator - Nano tweezes - Nanodots.

#### **UNIT - III : Nano Tubes**

Types of nanotubes - formation of nanotubes - methods and reactants - arcing in the presence of cobalt - laser methods - ball milling - chemical vapour deposition methods -properties of nano tubes - plasma arcing - electro deposition - pyrolytic synthesis - Zeolites and templated powders layered silicates.

#### **UNIT - IV: Characterization of Nanomaterials**

Scanning Electron Microscope: Theory - Instrumental setup and its application - Low KV SEM and its application - Low temperature SEM and its application - working of electron probe micro analysis and its application in elemental analysis - EDX spectra Important material systems- optical process in semiconductors- optical process in quantum wells - semi-conducting optoelectronic devices- organic ptoelectronic devices (qualitative).

#### UNIT - V : Applications of Nanotechnology

Structural and Mechanical materials - Nan electronics - opto electronic devices - LED - Applications - Colorants and Pigments - Nano - Lithography - Nanobiotechnology - DNA-Chips, DNA array devices, drug delivery systems.

#### BOOKS FOR STUDY & REFERENCE:

| S.No | Title of the Book                                                                    | Author                                 | Publisher                 | Year of<br>Publication |
|------|--------------------------------------------------------------------------------------|----------------------------------------|---------------------------|------------------------|
| 1    | Introduction to<br>Nanotechnology                                                    | Charles P.<br>Poole, Frank J.<br>Owens | Wiley                     | 2003                   |
| 2    | Nanotechnology: Basic science and emerging technologies                              | Mick Wilson                            | Overseas Press            | 2005                   |
| 3    | Amorphous<br>and<br>Nanocrystalline<br>Materials:                                    | A.Inoue,<br>K.Hashimoto                | Prentice Hall of<br>India | 2000                   |
| 4    | Nanostructures<br>and Nanomaterials<br>(Synthesis,<br>Properties and<br>Applications | Guozhong<br>Cao.                       | Prentice Hall, Inc.,      | 1998                   |

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | S   | S   | M   |
| CO2 | M   | M   | S   |
| CO3 | S   | M   | M   |
| CO4 | M   | M   | M   |

| Elective - I     | M.Sc - PHYSICS     | 2019 - 2020                  |  |  |
|------------------|--------------------|------------------------------|--|--|
| <b>M19PPHE03</b> | CRYSTAL AND CHARAC | CRYSTAL AND CHARACTERIZATION |  |  |
| CREDITS: 4       |                    |                              |  |  |

#### **Objectives**

The present elective title gives the elaborate ideas about crystals and their classifications. Also it deals the Physics governing the crystals and their growth techniques in detail along with applications.

#### **Course outcomes**

On the successful completion of the course, students will be able to

| СО  | Statement                                                                       | Knowledge<br>Level |
|-----|---------------------------------------------------------------------------------|--------------------|
| CO1 | Remember fundamentals of crystal growth and their importance                    | K1                 |
| CO2 | Understand the theories of crystal growth phenomenon                            | K2                 |
| СОЗ | Give the experimental ideas about crystal growth                                | КЗ                 |
| CO4 | Discuss the various crystal growth techniques with advantages and disadvantages | K4                 |

#### Unit - I:

Crystal systems and symmetry – unit cell –space lattices- non primitive lattices – point groups–space groups – analysis of space group symbols – Crystallization – growing crystals – choosing a crystals – crystal mounting-alignment – measurement of crystal properties. Fundamentals of Crystal Growth Importance of crystal growth – Classification of crystal growth methods – Basic steps: Generation, transport and adsorption of growth reactants – Nucleation: Kinds of nucleation –Classical theory of nucleation: Gibbs Thomson equations for vapour and solution – Kinetic theory of nucleation.

**Unit – II:** Theories of Crystal Growth An introductory note to Surface energy theory, Diffusion theory and Adsorption layer theory –Concepts of Volmer theory, Bravais theory, Kossel theory and Stranski's treatment – Two-

dimensional nucleation theory: Free energy of formation, Possible shapes and Rate of nucleation – Mononuclear, Polynuclear and Birth and Spread models.

**Unit – III:** Experimental Crystal Growth-Part-I: Melt Growth Techniques. Basics of melt growth – Heat and mass transfer – Conservative growth processes: Bridgman-Stockbarger method – Czochralski pulling method – Kyropolous method – Nonconservative processes: Zone-refining – Vertical and horizontal float zone methods – Skull melting method – Vernueil flame fusion method.

**Unit – IV:** Experimental Crystal Growth-Part-II: Solution Growth Techniques. Growth from low temperature solutions: Selection of solvents and solubility – Meir's solubility diagram – Saturation and supersaturation – Metastable zone width – Growth by restricted evaporation of solvent, slow cooling of solution and temperature gradient methods– Crystal growth in Gel media: Chemical reaction and solubility reduction methods – Growth from high temperature solutions: Flux growth Principles of flux method.

**Unit -V** Experimental Crystal Growth-Part-III: Vapour Growth Techniques. Basic principles – Physical Vapour Doposition (PVD): Vapour phase crystallization in a closed system – Gas flow crystallization – Chemical Vapour Deposition (CVD): Advantageous and disadvantageous – Growth by chemical vapour transport reaction: Transporting agents, Sealed capsule method, Open flow systems.

#### BOOKS FOR STUDY AND REFERENCE

| S.No | Title of the Book                        | Author       | Publisher                                  | Year of<br>Publication |
|------|------------------------------------------|--------------|--------------------------------------------|------------------------|
| 1    | Crystal Growth<br>Processes'             | J.C. Brice,  | John Wiley and Sons,<br>New York           | 1986                   |
| 2    | Crystallization'                         | J.W. Mullin  | Elsevier Butterworth-<br>Heinemann, London | 2004                   |
| 3    | Crystal Growth: Principles and Progress' | A.W. Vere,   | Plenum Press, New<br>York.                 | 1987                   |
| 4    | Crystal Growth                           | B.R. Pamplin | Pergamon Press,<br>Oxford.                 | 1975                   |

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | M   | M   | M   |
| CO2 | S   | M   | S   |
| CO3 | S   | S   | S   |
| CO4 | M   | S   | M   |

#### **SEMESTER-II**

| CORE - V   | M.Sc- PHYSICS           | 2019– 2020 |  |
|------------|-------------------------|------------|--|
| M19PPH05   | MATHEMATICAL PHYSICS-II |            |  |
| CREDITS: 4 |                         |            |  |

#### **Objectives**

The present title gives the detailed ideas about Probability, Complex variables and group theory and their respective applications, Linear vector variables and tensor analyses. And the extension of the unit will be presented in previous semester I.

#### **Course outcomes**

On the successful completion of the course, students will be able to

| СО  | Statement                                                       | Knowledge<br>Level |
|-----|-----------------------------------------------------------------|--------------------|
| CO1 | Remember basic Probability and the calculation in distributions | K1                 |
| CO2 | Summarize the salvation of complex variables                    | K2                 |
| CO3 | Analyze special features of group theory                        | К3                 |
| CO4 | Apply Laplace and Tensor analyses for various Physics problems  | K4                 |

#### Unit -I Probability

Probability-Addition rule of Probability - Multiplication Law of Probability-Probability distribution-Binomial distribution - mean Binomial distribution - Standard deviation of binomial distribution - Poisson distribution - Normal distribution - characteristics of normal distribution - Applications of normal distribution.

#### Unit - II Complex variables

Complex Algebra- Cauchy-Riemann Conditions-Cauchy's Integral Theorem- Cauchy's Integral formula-Laurent expansion-singularities-Mapping- Conformal mapping- Calculus of residues.

#### Unit - III Group Theory

Definition of Group - Subgroup, invariant group, abelian group, orthogonal and unitary groups -Homomorphism, isomorphism - Reducible and

irreducible representations - Generators of Continuous groups.

#### Unit - IV Linear vector spaces

Definition and Examples-Real Linear vector space-Uniqueness of Null and Reversed vectors- Scalar Products of Vectors-: Definition of Scalar Product of two vectors, Scalar product for real linear vector spaces, Cauchy-Schwartz inequality-Metric Spaces-Linear Independence of vectors and basis for a vector space-Dimension of a vector space-Orthonormal basis-Vector Subspaces-Direct sum decomposition.

#### Unit - V Tensor Analysis

Definition of Tensors – Contravariant, covariant and mixed tensors – addition and subtraction of Tensors – Summation convention- Symmetry and Anisymmmetry Tensor – Contraction and direct product – Quotient rule- Pseudotensors, Levi-Civita Symbol - Dual tensors, irreducible tensors-Metric Tensors-Christoffel symbols – Geodesics.

BOOKS FOR STUDY AND REFERENCE:

| S.No | Title of the Book                         | Author                    | Publisher                                    | Year of<br>Publication |
|------|-------------------------------------------|---------------------------|----------------------------------------------|------------------------|
| 1    | Mathematical<br>Physics                   | B.D. Gupta                | Vikas Publishing<br>House Pvt.Ltd            | 2006                   |
| 2    | Mathematical<br>Methods for<br>Physicists | Arfken &<br>Weber         | Elsevier 6 <sup>th</sup> edition             | 2010                   |
| 3    | Topics in<br>Mathematical<br>Physics      | David J<br>Griffiths -    | Parthasarathy H<br>Ane Pvt.Ltd New<br>DeL hi | 2007                   |
| 4    | Mathematical<br>Physics                   | H.K. Dass and<br>R. Verma | S. Chand &<br>Company 2 <sup>nd</sup> Ed     | 2001                   |

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | M   | S   | M   |
| CO2 | M   | S   | M   |
| CO3 | M   | S   | M   |
| CO4 | M   | M   | S   |

| CORE - VI  | M.Sc- PHYSICS | 2019– 2020 |
|------------|---------------|------------|
| M19PPH06   | QUANTUM MECHA | NICS- I    |
| CREDITS: 4 | SOWILOW MECHA | 1100-1     |

The failures of classical mechanics unleash the behaviors of matters at the microscopic level. The modern physics with the title quantum mechanics will open the puzzles of various physical properties at the microscopic level.

#### **Course outcomes**

On the successful completion of the course, students will be able to

| СО  | Statement                                     | Knowledge<br>Level |
|-----|-----------------------------------------------|--------------------|
| CO1 | Distinguish classical and quantum mechanics   | K1                 |
| CO2 | Discuss the hypothesis of quantum mechanics   | K2                 |
| CO3 | Give the time dependent and independent ideas | КЗ                 |
| CO4 | Discuss the applications of quantum mechanics | K4                 |

#### UNIT - I: Basics of wave mechanics

Equation of motion of matter waves- Schroedinger equation for the free particle -Physical interpretation of wave function-normalized and orthogonal wave functions-expansion theorem-admissibility conditions - solution of Schroedinger wave equation - stationary state solutions operator associated with different observables - expectation values - probability current density- Ehrenferts theorem. System of identical Particles: symmetric and antisymmetric wave functions - Exclusion principle.

## UNIT - II : Stationary state and eigen spectrum

Stationary states: time independent Schrodinger equation - Particle in a square well potential - Bound states -eigen values, eigen functions - nonlocalized states -potential barrier -quantum mechanical tunneling - reflection at barriers and wells-multiple potential well -Splitting energy levels-energy bands-Kronig - Penny model. Exactly soluble Eigenvalue Problems The simple harmonic oscillator: Energy Eigenvalues and energy eigen functions -properties of stationary states- abstract operator- eigen value spectrum-eigen functions- Angular momentum: operators- Separation of variables-eigen values and eigen functions- spherical harmonics.

#### UNIT - III: Approximation methods for Time - independent Problems

Perturbation theory for discrete levels: Equations in various orders of perturbation theory - Non-degenerate case-first and second order anharmonic oscillator-Degenerate case- removal of degeneracy - Effect of electric field (stark effect) on ground state of Hydrogen atom - two electron atom. Variation method: Variation Principle - for excited statesground state of Helium atom -hydrogen atom ion - WKB approximation - one dimensional Schrodinger equation-Asymptotic solution-validity of WKB approximation-solution near a turning point - connection formula for penetration barrier - Bohr-Sommer field quantization condition- tunneling through a potential barrier.

# UNIT - IV: Matrix formulation of quantum theory and equation of motion

Quantum state vectors and functions- Hilbert space-Dirac's -Bra-Ket notation-basis in Hilbert space - dynamical variables and linear operators - abstract operators - self adjoint -eigen value, eigen vectors - unitrary operators - representations of state vector-dynamical variables as matrix operators - commutation relation - diagonalization Harmonic oscillator-Schrodinger, Heisenberg and Interaction representation - coordinates and momentum representations - symmetries and conservation laws.

#### UNIT -V: Angular momentum

Angular momentum operators-commutation rules-eigen value spectrum matrix representation of J in the |jm> basis - spin angular momentum - spin 1/2 , spin-1, total wave function- addition of angular momenta-Clebsch-Gordan coefficients-spin wave functions for a system of two spin-1/2 particles. Identical Particles and spin Identical Particles - symmetry and Antisymmetric wave function - exchange degeneracy - Spin and statistics: Pauli's exclusion Principle- Slater determinant- collision of identical particles-spin and Pauli's matrices- density operator and density matrix.

#### **BOOKS FOR STUDY AND REFERENCE**

| S.No | Title of the Book                                  | Author        | Publisher                                | Year of<br>Publication |
|------|----------------------------------------------------|---------------|------------------------------------------|------------------------|
| 1    | A Text book of<br>Quantum Mechanics                | B.D.Gupta     | P. M. Mathews and<br>K.Venkatesan        | 2006                   |
| 2    | Quantum Mechanics                                  | Satya Prakash | Kedar Nath Ram Nath and Co. Publications | 2002                   |
| 3    | Principle of Quantum<br>Mechanics (2nd<br>Edition) | R.Shankar     | PlenumUS Publication                     | 2002                   |

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | S   | S   | S   |
| CO2 | S   | M   | M   |
| CO3 | M   | M   | S   |
| CO4 | S   | M   | M   |

| CORE - VII | M.Sc- PHYSICS                      | 2019– 2020 |  |
|------------|------------------------------------|------------|--|
| M19PPH07   | MICPOPPOCESSOP AND MICPOCONTROLLED |            |  |
| CREDITS: 4 | MICROPROCESSOR AND MICROCONTROLLER |            |  |

The present title gives Architecture and Programming of 8085, 8086 and applications of Microprocessor and microcontroller respectively in detail.

#### **Course outcomes**

On the successful completion of the course, students will be able to

| СО  | Statement                                                       | Knowledge<br>Level |
|-----|-----------------------------------------------------------------|--------------------|
| CO1 | Familiar with architecture and programming of 8085              | K1                 |
| CO2 | Brief about the architecture of 8086                            | K2                 |
| CO3 | Analyze the applications of microprocessor and microcontrollers | КЗ                 |
| CO4 | Apply Programming languages for various applications            | K4                 |

#### UNIT - I Architecture and Programming of 8085

Architecture of 8085 - Organization of 8085: Control, data and address buses - registers in 8085 - Addressing modes of 8085 - Instruction sets of 8085: Instruction types (based on number of bytes, based on operation), data transfer, arithmetic, logical, branching, stack and I/O instructions. Timing and sequencing: Instruction cycle, machine cycle, halt state, walt state-Timing diagram for opcode fetch, memory read and write cycles. Assembly language programming, Simple programs using arithmetic and logical operations - Interrupts: Maskable and non-maskable, hardware and multilevel interrupts.

#### **UNIT - II Architecture of 8086**

Memory organization, Register organization: General purpose, index, pointer, segment registers and flags - Bus structure: data bus, address bus,

effective & physical address and pipeling. Addressing modes of 8086: Register, immediate, direct and indirect addressing.

#### **UNIT - III Applications of Microprocessors**

Microprocessor based process control - closed loop control - open 100p control. Example for closed loop control - crystal growth control. Microprocessor based temperature monitoring systems - limit setting - operator panel - block diagram. Analog to digital conversion using ADC 0809 interfacing through PPI 8255 - Block diagram.

#### UNIT - IV Architecture of Microcontroller 8051

Introduction - comparison between microcontroller and microprocessors - Architecture of 8051 - Key features of 8051 - memory organization - Data memory and program memory-internal RAM organization - Special function registers - control registers - I/O ports - counters and timers - interrupt structure.

#### UNIT - V Programming the Microcontroller 8051

Instruction set of 8051 - Arithmetic, Logical, Data move jump and call instructions, Addressing modes - Immediate, register, direct and indirect addressing modes - Assembly language programming - simple programs to illustrate arithmetic and logical operations (Sum of numbers, biggest and smallest in an array) - software time delay.

# BOOKS FOR STUDY AND REFERENCE

| S.No | Title of the Book                                                              | Author              | Publisher                                    | Year of<br>Publication |
|------|--------------------------------------------------------------------------------|---------------------|----------------------------------------------|------------------------|
| 1    | Introduction to<br>Microprocessors                                             | Aditya<br>P.Mathur  | Tata McGraw Hill<br>Company, II edition.     | 2006                   |
| 2    | Microprocessor<br>Architecture,<br>Programming and<br>Application with<br>8085 | Ramesh<br>S.Gaonkar | Wiley Eastern.                               | 1998                   |
| 3    | Microprocessors and Interfaces                                                 | Douglas V.Hall      | Tata McGraw Hill<br>Company.                 | 1983                   |
| 4    | Introduction to<br>Microprocessors                                             | Aditya<br>P.Mathur  | Tata McGraw Hill<br>Company, III<br>edition. | 1971                   |

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | M   | S   | S   |
| CO2 | S   | S   | M   |
| CO3 | S   | M   | S   |
| CO4 | M   | M   | S   |

| Elective - II    | M.Sc - PHYSICS | 2019 - 2020       |  |
|------------------|----------------|-------------------|--|
| <b>M19PPHE04</b> | THIN FILM PHY  | THIN FILM PHYSICS |  |
| CREDITS: 4       |                |                   |  |

The elective course will be basic platforms for researchers and students in thin film science and technology. It deals preparation and coating techniques and also gives the idea about the measurement of the thickness of thin films. Also it provides characterization of thin films.

#### **Course outcomes**

On the successful completion of the course, students will be able to

| СО  | Statement                                                                              | Knowledge<br>Level |
|-----|----------------------------------------------------------------------------------------|--------------------|
| CO1 | Proceed the application of Physics in thin film science and technology                 | K1                 |
| CO2 | Understand the difference between thin film with other existing technologies           | K2                 |
| CO3 | Analyze the measurement techniques involved in thin films                              | КЗ                 |
| CO4 | Apply the techniques to know the Physical properties of thin films by suitable methods | K4                 |

**UNIT - I:** Preparation of Thin Films Spray pyrolytic process – characteristic feature of the spray pyrolytic process – ion plating – Vacuum evaporation – Evaporation theory – The construction and use of vapour sources – sputtering Methods of sputtering – Reactive sputtering – RF sputtering - DC planar m magnetron sputtering .

**UNIT - II:** Thickness measurement and Nucleation and Growth in Thin Film) Thickness measurement: electrical methods – optical interference methods – multiple beam interferometry – Fizeau – FECO methods – Quartz crystal thickness monitor. Theories of thin film nucleation – Four stages of film growth incorporation of defects during growth.

**UNIT - III:** Electrical properties of metallic thin films Sources of resistivity in metallic conductors – sheet resistance - Temperature coefficient of resistance (TCR) – influence of thickness on resistivity – Hall effect and magneto resistance – Annealing – Agglometation and oxidation .

**UNIT - IV:** Transport properties of semiconducting and insulating Films Semiconducting films; Theoretical considerations - Experimental results - Photoconduction - Field effect thin films - transistors, Insulation films Dielectric properties - dielectric losses - Ohmic contracts - Metal - Insulator and Metal - metal contacts - DC and AC conduction mechanism.

**UNIT - V:** Optical properties of thin films and thin films solar cells Thin films optics –Theory – Optical constants of thin films – Experimental techniques – Multilayer optical system – interference filers – Antireflection coating ,Thin films solar cells : Role, Progress , and production of thin solar cells – Photovoltaic parameter, Thin film silicon (Poly crystalline) solar cells : current status of bulk silicon solar cells – Fabrication technology – Photo voltaic performance : Emerging solar cells : GaAs and CulnSe .

#### **BOOKS FOR STUDY AND REFERENCE**

| S.No | Title of the Book                  | Author                                      | Publisher                              | Year of<br>Publicati |  |
|------|------------------------------------|---------------------------------------------|----------------------------------------|----------------------|--|
| 1    | Hand book of Thin films Technology | L I Maissel and<br>R Clang .                | Second Edition,<br>Prentice Hall India | 1989                 |  |
| 2    | Thin film Phenomena                | K L Chopra .                                | Fourth Edition, John<br>Wiley & Sons,  | 2005                 |  |
| 3    | physics of thin films,             | George Hass<br>and<br>others .Saunder<br>s, | Prentice Hall India<br>Pvt. Ltd        | 1983                 |  |

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | S   | S   | M   |
| CO2 | M   | M   | S   |
| CO3 | M   | M   | M   |
| CO4 | S   | M   | M   |

| Elective - II    | M.Sc- PHYSICS         | 2019- 2020                       |  |
|------------------|-----------------------|----------------------------------|--|
| <b>M19PPHE05</b> |                       | ULTRASONICS AND ITS APPLICATIONS |  |
| CREDITS: 4       | ULTRASONICS AND ITS A |                                  |  |

In recent years Ultrasonic play a major role in the fields of scanner technologies and biological studies. With this connection the present title enhance the students towards the development of knowledge about Ultrasonic and their respective applications.

#### **Course outcomes**

On the successful completion of the course, students will be able to

| СО  | Statement                                                         | Knowledge<br>Level |
|-----|-------------------------------------------------------------------|--------------------|
| CO1 | Recall the fundamentals of sound                                  | K1                 |
| CO2 | Understand the Propagation of ultrasonic through different medium | K2                 |
| CO3 | Give the experimental ideas about Ultrasonic during generation    | КЗ                 |
| CO4 | Discuss the various applications of ultrasonic                    | K4                 |

#### **UNIT I: Source of Ultrasonic waves**

Piezo electric - magnetostrictive transducers, electromechanical coupling factors and transducer efficiency - Transducers and band width characteristics - Equivalent electrical circuit of piezoelectric vibrators. Detection of ultrasonic waves: Mechanical, thermal, electrical and optical methods.

# UNIT II: Techniques used in ultrasonic investigations

Interferometer, Optical, pulse, sing-around, radiation pressure and streaming methods – Measurement of propagation constants in different media – Relative merits of the techniques – Diffraction effects of sound velocity and absorption measurements– Hypersonic velocity and absorption measurements.

#### UNIT III: Propagation of ultrasonic waves in liquids

Propagation of ultrasonic waves in liquids: mixtures. Excess compressibility and the relation to excess volume – Excess intermolecular free length – relative association. Sound velocity and compressibility of electrolytic solutions – Dispersion of sound in liquids – Different mechanisms of the absorption of sound – Relaxation phenomenon.

#### UNIT IV: Dielectric measurements

Continuous wave and pulse techniques for measuring elastic constants of solids - Determination of elastic constants of cubic crystals - Dielectric behavior of materials -Dipole moment of polar and non - polar molecules - dielectric relaxation time - permittivity of solutions - breakdown - Strength of Glasses - Dielectric properties of liquid mixtures at different temperatures - Dielectric absorption.

#### **UNIT V: Applications**

Acoustical grating – sonar – depth of sea – measurement of velocity of blood flow and movement of heart – Ultrasonic imaging – High resolution images – Non destructive testing – Principle – Methods – Liquid penetrant method - - Ultrasonic flaw detector – X- ray Radiography and Fluoroscopy – Thermography - Applications of Ultrasonics in NDT.

# BOOKS FOR STUDY & REFERENCE:

| S.No | Title of the Book                                  | Author                        | Publisher                        | Year of<br>Publication |
|------|----------------------------------------------------|-------------------------------|----------------------------------|------------------------|
| 1    | Fundamentals of<br>Ultrasonics,<br>Second Edition, | J. Blitz,                     | Plenum Press, New<br>York        | 1967                   |
| 2    | Physical Acoustics                                 | W.P. Mason,                   | Second Edition,<br>Oxford Press. | 1959                   |
| 3    | Sonics                                             | P.P. Hueter<br>and R.H. Bolt, | Wiley, New York                  | 1955                   |
| 4    | Molecular<br>Acoustics                             | J. Matheson                   | Wiley, New York                  | 1971                   |

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | S   | M   | S   |
| CO2 | S   | M   | S   |
| CO3 | M   | S   | M   |
| CO4 | M   | S   | M   |

| Elective - II | M.Sc- PHYSICS      | 2019 - 2020 |
|---------------|--------------------|-------------|
| М19РРНЕ06     | NONLINEAD DVN      | AMICS       |
| CREDITS: 4    | NONLINEAR DYNAMICS |             |

The development of dynamics plays a major role in the field of classical mechanics. By bearing in mind the applications of dynamics, the present course deals about dynamics in non linear conditions. After the completion of the course, the students are able to understand the concepts of non linear dynamics using theoretical knowledge.

#### **Course outcomes**

On the successful completion of the course, students will be able to

| СО  | Statement                                | Knowledge<br>Level |  |
|-----|------------------------------------------|--------------------|--|
| CO1 | Recall the classifications of motions    | K1                 |  |
| CO2 | Understand Newtonian laws of motion      | K2                 |  |
| CO3 | Give the theoritical ideas about Chaos   | К3                 |  |
| CO4 | Discuss the various applications of Non  | K4                 |  |
| 004 | linear equations thorough suitable tools | 11.4               |  |

## **UNIT I: Introduction to Nonlinear Dynamical Systems**

The notion of nonlinearity – superposition principle and its validity – linear and nonlinear oscillators – autonomous and non autonomous systems – equilibrium points – phase space classification of equilibrium points.

#### UNIT II: Chaos

Simple bifurcations – the logistic map – period doubling phenomenon – onset of chaos – bifurcation scenario in Duffing oscillator – chaos in conservative systems – Poincare surface of section – Henon – Heiles systems – Lyapunov exponents.

#### **UNIT III: Solitons**

Nonlinear dispersive system – cnoidal solitary waves – the scott Russles Phenomenon and K – dV equation – Fermi – Pasta – Ulam Numerical experiment – Numerical experiment of Zabusky and kruskal – birth of soliton.

#### UNIT IV: Tools to solve Non - linear Equations

Integrability and methods to solve equations the notion of Integrability – Painleve analysis – Lax pair – Inverse Scatting Transform method – Bilinearization procedure – examples – Koteweg – de – Vires – Nonlinear Schordinger equations.

## UNIT V: Application of Non - Linear Dynamics

Applications – Chaos and secure communications – soliton in condensed matter system – Non linear optics and biological systems.

#### **BOOKS FOR STUDY AND REFERENCE**

| S.No | Title of the Book                                                         | Author                                | Publisher                                | Year of<br>Publication |
|------|---------------------------------------------------------------------------|---------------------------------------|------------------------------------------|------------------------|
| 1    | Nonlinear systems,                                                        | P.G. Drazin,                          | Cambridge University<br>Press, Cambridge | 1992                   |
| 2    | Solitons, An introductions,                                               | P.G. Drazin and R.S.Johnson,          | Cambridge University<br>Press, Cambridge | 1989                   |
| 3    | solutions, Nonlinear<br>Evolution Equations<br>and<br>Inverse Scattering, | M.J. Ablowitz<br>and P.A<br>Clarkson, | Cambridge University<br>Press, Cambridge | 1991                   |

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | S   | M   | S   |
| CO2 | S   | M   | S   |
| CO3 | M   | S   | M   |
| CO4 | M   | S   | M   |

#### **SEMESTER-III**

| CORE - VIII | M.Sc - PHYSICS | 2019 - 2020            |  |
|-------------|----------------|------------------------|--|
| M19PPH08    | QUANTUM MECHAN | QUANTUM MECHANICS – II |  |
| CREDITS: 4  | <b>3</b>       |                        |  |

# **Objectives**

The failures of classical mechanics unleash the behaviors of matters at the microscopic level. The modern physics with the title quantum mechanics will open the puzzles of various physical properties at the microscopic level.

#### **Course outcomes**

On the successful completion of the course, students will be able to

| СО  | Statement                                     | Knowledge<br>Level |
|-----|-----------------------------------------------|--------------------|
| CO1 | Distinguish classical and quantum mechanics   | K1                 |
| CO2 | Discuss the hypothesis of quantum mechanics   | K2                 |
| CO3 | Give the ideas about identical particles      | КЗ                 |
| CO4 | Discuss the applications of quantum mechanics | K4                 |

# UNIT I: Systems of identical particles

Indistinguishability of identical particles – Symmetric and anti Symmetric wave function – Exchange operator – Distinguishability of identical particles – Bosons and Fermions – Pauli's Exclusion principles – Collision of identical particles – Ensemble of identical particle systems – Density operator – Density matrix – Properties – Symmetric and Anti symmetric wave function of hydrogen molecule.

#### **UNIT II: Scattering Theory**

Differential and Total cross-section – Scattering amplitude – Green's function: formal expression for scattering amplitude – Born approximation and its validity – scattering by coulomb and Screened coulomb potentials – Square-well potential – Exponential – Gaussian potential – Partial wave analysis – Phase Shifts – Scattering amplitude in terms of phase shift– Low

energy scattering: Scattering length and effective range scattering by a perfectly rigid sphere.

#### UNIT III: Emission and absorption of radiation

Semi – Classical theory of radiation: Einstein coefficients – atom field interaction –Transition probabilities for stimulated emission and absorption and spontaneous emission of radiation – Electric dipole transition – Selection rules and polarizability – Quantum theory of radiation: Radiation field Hamiltonian – Radiation field as an assembly of oscillators – emission and absorption rates.

#### **UNIT IV: Atomic and molecular Structure**

Approximations in atomic structure – Central field approximation – Thomas Fermi Statistical model – Hartree - Fock Equation – The method of self consistent field – Residual electrostatic and spin orbit interaction – Alkali atoms – Doublet separation – Coupling schemes – Hydrogen molecule – Covalent bond.

#### **UNIT V: Relativistic Wave equation**

The Klein – Gordon Equation – Charge and current densities in four vector – KG equation in electromagnetic field – The Dirac relativistic equation: The Dirac matrices – Free particle solutions – Meaning of negative energy states– Electromagnetic potential: magnetic moment of the electron – Existence of electron spin - Spin orbit energy.

# BOOKS FOR STUDY AND REFERENCE:

| S.No | Title of the Book    | Author                               | Publisher                                | Year of<br>Publication |
|------|----------------------|--------------------------------------|------------------------------------------|------------------------|
| 1    | Quantum<br>Mechanics | Satyaprakash                         | Kedar Nath Ram<br>Nath.                  | 2007                   |
| 2    | Quantum<br>Mechanics | P.M. Mathews<br>and K.<br>Venkatesan | Tata McGraw Hill                         | 2006                   |
| 3    | Quantum<br>Chemistry | R.K. Prasad                          | New Age<br>International Pvt.<br>Ltd. 6. | 2000                   |
| 4    | Quantum<br>Mechanics | Gupta, Kumar,<br>Sharma,             | Jai Prakash Nath<br>and Co               | 2000                   |

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | S   | S   | S   |
| CO2 | S   | M   | M   |
| CO3 | M   | S   | S   |
| CO4 | S   | M   | M   |

| CORE - IX  | M.Sc - PHYSICS  | 2019 - 2020           |  |
|------------|-----------------|-----------------------|--|
| M19PPH09   | STATISTICAL MEC | STATISTICAL MECHANICS |  |
| CREDITS: 4 |                 |                       |  |

The present course completely deals about the distributions of the particles in n number of ways through mid way Physics so called as Statistical Mechanics.

#### **Course outcomes**

On the successful completion of the course, students will be able to

| СО  | Statement                                                       | Knowledge<br>Level |
|-----|-----------------------------------------------------------------|--------------------|
| CO1 | Distinguish classical and statistical mechanics                 | K1                 |
| CO2 | Discuss the hypothesis of Statistical mechanics                 | K2                 |
| СОЗ | Give the various distributions present in statistical mechanics | КЗ                 |
| CO4 | Discuss the applications of Statistical Mechanics               | K4                 |

#### Unit - I: Classical Statistical Mechanics

Phase space and ensembles – Types of ensembles - Liouville's theorem – Statistical Equilibrium –Thermal Equilibrium- Elementary ideas of Partition Functions-Connection between Statistical and Thermodynamical quantities - Micro and macro states - Maxwell - Boltzmann distribution law - Distribution of energy and velocity - Principle of equipartition of energy - Boltzmann's entropy relation.

# **Unit - II Kinetic Theory**

Binary collisions - Boltzmann transport equation and its validity - Boltzmann's H-theorem and its analysis - Poincare's theorem - Transport

phenomena: Mean free path - Zero order approximation - Viscosity of a gas - Navier - Stokes equation - Application to Incompressible fluids.

# Unit – III Entropy and Thermodynamics

Entropy - Principle of entropy increase - Entropy and Disorder- Change in Enrtopy for reversible and irreversible processes - Gibbs paradox - Resolution of the paradox - Sackur - Tetrode equation - Thermodynamic Potentials and Reciprocity relations-- Nernst Heat Theorem.

#### Unit - IV Quantum Statistics

Ideal Bose Systems – Photon gas – Radiation pressure and density - Bose - Einstein condensation – Debye's model of solids: Phonon gas - Ideal Fermi Systems – Fermi energy – Mean energy of Fermions – Electron gas in metals - Thermionic emission - Pauli Para magnetism.

### Unit - V Advanced Topics in Statistical Mechanics

Phase transition- Order of phase transitions-First and second order-Interaction of spin in Ferromagnetism- Weiss molecular field approximation—General formulism of Ising model - One dimensional Ising model - Fluctuations- Mean Square deviation- Brownian motion- Expression for Brownian motion- Fourier Analysis of random function: Weiner- Khinchine theorem.

# BOOKS FOR STUDY AND REFERENCE

| S.No | Title of the Book                           | Author                                    | Publisher                                                           | Year of<br>Publication |
|------|---------------------------------------------|-------------------------------------------|---------------------------------------------------------------------|------------------------|
| 1    | Fundamentals of<br>Statistical<br>Mechanics | B.B.Laud                                  | New Age<br>International<br>Publishers, New<br>Delhi,               | 2007.                  |
| 2    | Statistical<br>Mechanics                    | Kerson Huang                              | Wiley eastern Ltd.,<br>New Delhi,                                   | 1983                   |
| 3    | Statistical<br>Mechanics                    | B.K. Agarwal<br>and M. Eisnor             | New Age<br>International<br>Publishers, 2 <sup>nd</sup><br>Edition. | 1993                   |
| 4    | Elementary<br>Statistical<br>Mechanics      | Gupta and<br>Kumar, Pragati<br>Prakashan, | Meerut, 8 <sup>th</sup> Edition.                                    | 1981                   |

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | M   | S   | S   |
| CO2 | M   | S   | M   |
| CO3 | S   | S   | M   |
| CO4 | S   | S   | M   |

| CORE - X   | M.Sc- PHYSICS                         | 2019– 2020 |  |
|------------|---------------------------------------|------------|--|
| M19PPH10   | COMPUTATIONAL METHODS AND PROGRAMMING |            |  |
| CREDITS: 4 |                                       |            |  |

The present title gives applications of programs for the development of Physics and for theoretical applications. It covers C++ programming, curve fitting and Linear and non linear equations etc.,

#### **Course outcomes**

On the successful completion of the course, students will be able to

| СО  | Statement                                                  | Knowledge<br>Level |
|-----|------------------------------------------------------------|--------------------|
| CO1 | Familiar with computer programmings                        | K1                 |
| CO2 | Summarize Curve fittings and interpolations                | K2                 |
| CO3 | Analyze Linear and Non linear solutions                    | КЗ                 |
| CO4 | Apply solutions to various types of differential equations | K4                 |

# UNIT - I: C++ programming

Constants, variables and their declarations - Input, output and comparison operators-if, if. else, switch, while, do-while, for, break statements- main, void, exit, swap functions- Arrays passing by value and passing by reference.

#### UNIT - II: Curve fitting and interpolation

Curve fitting: Method of least squares- Normal equations- Straight line fit-Exponential and power-law fits. Newton interpolation polynomial: Linear Interpolation- Higher-older polynomials-First-order divided differences-Gregory-Newton interpolation polynomials-Lagrange interpolation -Truncation error.

#### UNIT - III: Solutions of Linear and Nonlinear Equations

Simultaneous linear equations: Gauss elimination method -Jordan's modification-Inverse of a matrix by Gauss- Jordon Method - Roots of

nonlinear equations: Newton-Raphson method - Iterative rule - Termination criteria - Pitfalls - Order of convergence

# UNIT - IV: Numerical integration and Differentiation

Newton-Cotes quadrate formula - Trapezoidal, Simpson's 1/3 and 3/8 rules - Errors in the formulas. Differentiation: First -order derivative:-Two and four-point formulas second-order derivative: Three and five-point formulas.

## UNIT - V: Numerical solution to ordinary Differential Equations

First-order equations: Euler and improved Euler methods-Formulas-Local and global truncation errors-Fourth-order Runge-Kutta method-Geometric description of the formula-Errors versus step size -Second order equation- Euler methods and Fourth order Runge-Kutta method.

#### **BOOKS FOR STUDY AND REFERENCE**

| S.No | Title of the Book                                                    | Author                                       | Publisher                                 | Year of<br>Publication |
|------|----------------------------------------------------------------------|----------------------------------------------|-------------------------------------------|------------------------|
| 1    | Programming with C++,                                                | J. R. Hubbard,                               | McGraw-hill, New<br>Delhi,                | 2006.                  |
| 2    | Numerical Methods<br>for Mathematics,<br>Science and<br>Engineering, | J. H. Mathews,                               | Prentice-<br>Hall of India, New<br>Delhi, | 1998                   |
| 3    | Numerical Methods for Scientific and Engineering Computation,        | M. K. Jain<br>S.R.K Iyengar<br>and R.K.Jain, | New Age<br>International, New<br>Delhi,   | 1993                   |
| 4    | Elementary<br>Numerical<br>Analysis, 3rd<br>Ed,                      | D. Conte and C.Boor,                         | McGraw<br>Hill,Singapore,                 | 1981                   |

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | M   | S   | S   |
| CO2 | S   | M   | S   |
| CO3 | M   | M   | S   |
| CO4 | S   | S   | M   |

| CORE - XI  | M.Sc - PHYSICS  | 2019 - 2020            |  |  |
|------------|-----------------|------------------------|--|--|
| M19PPH11   | ELECTROMAGNETIC | ELECTROMAGNETIC THEORY |  |  |
| CREDITS: 4 |                 |                        |  |  |

It provides the detailed idea about Electromagnetic waves with Maxwell's equations. It also deals electrostatics along with magneto statics in detail with applications. In addition with the above it introduces Plasma Physics to the students.

#### **Course outcomes**

On the successful completion of the course, students will be able to

| СО  | Statement                                                                         | Knowledge<br>Level |
|-----|-----------------------------------------------------------------------------------|--------------------|
| CO1 | Know about electrostatics and magnetostatics with basic principles                | K1                 |
| CO2 | Understand the connection between electricity and magnetism with equations        | K2                 |
| CO3 | Discuss about the role of electromagnetic waves to unleash the puzzles of Physics | КЗ                 |
| CO4 | Elaborate the concepts EMT for Plasma<br>Physics                                  | K4                 |

#### **UNIT - I : Electrostatics**

Coulomb's Law - Electric field intensity - Field due to point and continuous charges -Gauss' Law and its applications- Gauss's law and application - Electric potential - Electric field and equipotential plots. Electric field in free space, conductors, dielectric -Dielectric polarization - Dielectric strength - Electric field in multiple dielectrics- Molecular polarisability and electric susceptibility-Electrostatic energy in dielectric medium- Clausius-Mossotti equation Laplace and Poisson equations, boundary value problems.

#### **UNIT - II: Magnetostatics**

Lorentz Law of force, magnetic field intensity - Biot-savart Law - Ampere's Law -Magnetic field due to straight conductors. circular sheet infinite of current -Magnetic flux density (B) - B in free space. conductor. magnetic materials -Magnetizationagnetic field in multiple media - Boundary conditions Scalar and vector potential - Magnetic force Torque Inductance-Energy density - Magnetic circuits.

# UNIT - III : Electrodynamic fields

Faraday's laws, induced emf - Transformer and motional EMF - Forces and Fields -Energy in quasi-stationary Electromagnetic Maxwell's (differential and integral forms) Displacement equations current-Relation between field theory and circuit theory. potential-Vector scalar transformationand Gauge Lorentz Coulomb gauge Conservation laws for a system of changesgauge-Poynting theorem.

#### UNIT - IV : Electromagnetic waves

Wave Generation -Electro Magnetic Wave equations parameters; velocity, intrinsic impedance, propagation constant -Electromagnetic waves in free space, dielectrics, and conductors; Reflection and refraction, polarization, Fresnel's Law, interference, coherence, and diffraction; Dispersion relations in plasma skin depth, Poynting vector Wave guides-Propagation of waves in a rectangular wave guide-inhomogeneous wave equation and retarded potentials field and radiation due to an oscillating electric dipole.

#### UNIT - V : Plasma physics

Definition of plasma; Its occurrence in nature; Dilute and dense plasma; Uniform but time-dependent magnetic field: Magnetic pumping; Static non-uniform magnetic field: Magnetic bottle and loss cone; MHD equations, Magnetic Reynold's number; Pinched plasma; Bennett's relation; Qualitative discussion on sausage and kink instability.

# BOOKS FOR STUDY AND REFERENCE:

| S.No | Title of the Book                                      | Author                       | Publisher                                                | Year of<br>Publication |
|------|--------------------------------------------------------|------------------------------|----------------------------------------------------------|------------------------|
| 1    | Elements of<br>Electromagnetics                        | Mathew N.<br>O. Sadiku       | Oxford University press Inc. First India edition,        | 2007                   |
| 2    | Electromagnetism -<br>Theory and<br>Applications       | Ashutosh<br>Pramanik,        | Prentice-Hall of<br>India Private<br>Limited, New Delhi, | 2006                   |
| 3    | Introduction to<br>Electromagnetics-<br>III Edition    | David J<br>Griffiths -       | Prantice Hall of<br>India Pvt.Ltd New<br>Delhi,          | 2000                   |
| 4    | Foundations of<br>Electromagnetic<br>Theory-VI Edition | J.Milman and<br>C.C. Halkias | Narosa Publishing<br>House, New Delhi                    | 2000                   |

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | S   | S   | S   |
| CO2 | S   | M   | M   |
| CO3 | M   | S   | S   |
| CO4 | S   | M   | M   |

| Elective - III | M.Sc- PHYSICS | 2019- 2020   |  |
|----------------|---------------|--------------|--|
| M19PPHE07      |               |              |  |
| CREDITS: 4     | NANO PHYSI    | NANO PHYSICS |  |

Bearing in mind the role of the applications of recent technologies The present course deals about the innovations of Nano science and Technology. Also it deals about the Physical and chemical properties of Materials in Nanoscale level.

#### **Course outcomes**

On the successful completion of the course, students will be able to

| СО  | Statement                                                                      | Knowledge<br>Level |
|-----|--------------------------------------------------------------------------------|--------------------|
| CO1 | Remember the differences between chemical and physical properties              | K1                 |
| CO2 | Understand the techniques involved in the synthesis of nanomaterials           | K2                 |
| CO3 | Analyze nanomaterials using various characterization techniques                | КЗ                 |
| CO4 | Apply studied theories for various applications which lying in Nanoscale level | K4                 |

## **UNIT I: Basic Properties of Nanoparticle**

Particle size; Top down and bottom up ideas, particles shape; Size effect and properties of nano-particles; Particle density; Melting point; Surface tension; Wettability; Specific surface area and pore; Composite structure; Crystal structure; Surface characteristics; Mechanical properties; Electrical properties; Magnetic properties; Optical properties; Concept of vacuum technology.

# UNIT II: Quantum Phenomen

One dimensional quantum or electron leak; Quantized electron energy; Time dependent perturbati on theory; Transi ti on to conti nuum (Fermi 's Gol den rule); Density of states (DOS); Spin effects (Kondo resonance, Zeeman splitting) spectroscopy.

# UNIT III: Nanofabrication and Nanopatterning

Sol-Gel synthesis, Hydrothermal Growth, Optical, X-ray, and electron beam lithography, self -assembled organic layers, scanning tunneling microscopy, atomic force microscopy.

#### **UNIT IV: Nano Systems**

An artificial and tunable atom (quantum dot); Quantum wire; Quantum Hall effect; Carbon nano-tube; Tunnel diode; Molecular transistor; Single electron transistor; Spin polarized transistor; Thin films; Self assembly.

## Unit V: Applications of Nanomaterial

Optoelectronic properties of molecular materials, nanotechnology devices: OLEDs, OTFTs. Bioelectronics and biosensors: charge transport, DNA and protein functional systems, electronic noses and biosensors.

# BOOKS FOR STUDY & REFERENCE:

| S.No | Title of the Book                                                                                                | Author                                                         | Publisher                    | Year of<br>Publication |
|------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------|------------------------|
| 1    | Scanning Probe Microscopy and Spectroscopy – Methods and Applications                                            | Roland<br>Wiesendang<br>er                                     | Cambidge<br>University Press | 1994                   |
| 2    | The Physics and<br>Chemistry of<br>Materials                                                                     | Joel I.<br>Gersten,<br>Frederick W.<br>Smith                   | John<br>Wiley and Sons       | 2001                   |
| 3    | Applied Scanning<br>Probe<br>Methods IX<br>Characterization                                                      | Bhushan<br>Bharat,<br>Fuchs<br>Harald,<br>Tomitori<br>Masahiko | Springer                     | 2008                   |
| 4    | Nanophysics and<br>Nanotechnology: An<br>Introduction to<br>Modern Concepts in<br>Nanoscience Second<br>Edition, | E. Wolf                                                        | Wiley-VCH                    | 2006                   |

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | S   | S   | M   |
| CO2 | M   | M   | S   |
| CO3 | S   | M   | M   |
| CO4 | M   | M   | M   |

| Elective - III | M.Sc - PHYSICS | 2019 - 2020     |  |
|----------------|----------------|-----------------|--|
| M19PPHE08      | MEDICAL PHY    | MEDICAL PHYSICS |  |
| CREDITS: 4     |                |                 |  |

The elective course will be the basic platforms for researchers and students towards the applications of Physics in Medical Sciences.

#### **Course outcomes**

On the successful completion of the course, students will be able to

| со  | Statement                                                 | Knowledge<br>Level |
|-----|-----------------------------------------------------------|--------------------|
| CO1 | Remember Bio electric signals                             | K1                 |
| CO2 | Understand the mechanism of transducers                   | K2                 |
| CO3 | Analyze measurements in human through electro neurography | КЗ                 |
| CO4 | Apply Physics Laws with the endoscopes, X-ray etc.,       | K4                 |

**Unit-I:** Bio electric signals – electrodes – surface. Needle and microelectrodes, Bio-Sensors – pulse sensor.

**Unit – II:** Transducers: thermister, photo electric type – transducer – photo voltaic cells – photo emission cells – diode – detectors – optical fibers.

**Unit –III:** Blood pressure measurement: sphygmomanometer measurement of heat rate – basic principles of ECG - basic principles of electroneurography – ENG – principle of MRI

**Unit – IV:** Basic X-ray production of X-ray, X-ray image application of X-ray, Examination. Basic principle of X-ray tomography.

**Unit-V:** Endoscopes – thermography - Liquid crystal – Thermography - Microwave thermography – Basic principles of ultra sonography – laser – uses of laser in medicine.

# BOOKS FOR STUDY AND REFERENCE

| S.No | Title of the Book                              | Author                      | Publisher                      | Year of<br>Publication |
|------|------------------------------------------------|-----------------------------|--------------------------------|------------------------|
| 1    | Radiation Physics<br>for Medical<br>Physicists | E.B.Podgarsak               | Springer                       | 1996                   |
| 2    | The Physics of radiology                       | H.E.Johns and<br>Cunningham | Charles C Thomas<br>Publishers | 2000                   |

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | S   | S   | S   |
| CO2 | M   | M   | M   |
| CO3 | M   | S   | M   |
| CO4 | S   | M   | S   |

| Elective -III | M.Sc- PHYSICS | 2019- 2020       |  |
|---------------|---------------|------------------|--|
| М19РРНЕ09     |               | OPTO ELECTRONICS |  |
| CREDITS: 4    | OPTO ELECTRO  |                  |  |

The present core course is considered as one of the most unique research course in Physics and will be basic platforms for researchers and scientists.

#### **Course outcomes**

On the successful completion of the course, students will be able to

| СО  | Statement                                                                    | Knowledge<br>Level |
|-----|------------------------------------------------------------------------------|--------------------|
| CO1 | Familiar with Optical concepts and their forms based on electron propagation | K1                 |
| CO2 | Understand the concepts of active and passive devices                        | K2                 |
| СОЗ | Discuss the function of fibre optical communication                          | КЗ                 |
| CO4 | Extend optoelectronics for optical and sensor applications                   | K4                 |

#### **UNIT I: Introduction**

Propagation of electromagnetic waves in dielectric wave guides – fibers – boundary conditions – phase velocity and group velocity – Dispassion – cut off frequencies – EM field in core and cladding – single mode and multimode fibers.

#### **UNIT II: Active Devices**

LED's lasers – Laser principles – spontaneous and stimulated emission – coherence – gain equation – three level, four level lasers- examples of lasers (He-Ne) Ruby, diode –homojunction and heterojunction diode lasers.

#### **UNIT III: Fibre Optics Communication**

LED and lasers source – Transmitter modulator – acousto – optic, electro optic modulator – AM, FM, DCM modulation – detection and demodulation radiation detection – PIN, APD and PM tube.

#### **UNIT IV: Optical Fiber Sensors**

General features, types of OFS, intrinsic and extrinsic sensors, intensity sensors, shuttes based multimode OFS, simple fiber based sensors for displacement, temperature and pressure measurements – reflective OFS and applications, Fiber Bragg grating based sensors.

#### UNIT V: Interferometric FOS

Basic principles, interferometric configurations, Mach – Zendes. Michelson and Fabry – Perrot configurations – components and construction of interferometric FOS, applications of interferometric FOS, Sagnac interferometer, fibers gyro, OTDR and applications.

#### **BOOKS FOR STUDY & REFERENCE:**

| S.No | Title of the Book                                  | Author       | Publisher                    | Year of<br>Publication |
|------|----------------------------------------------------|--------------|------------------------------|------------------------|
| 1    | Planar Optical<br>Waveguides and<br>Fibres, Oxford | H.G. Unger,  | Oxford University<br>Press   | 1977                   |
| 2    | Principles of Optical Electronics,                 | A. Yariv     | John Wiley, New<br>York      | 1984                   |
| 3    | Waves and Fields in<br>Optoelectronics             | H.A. Haus    | Prentice Hall, New<br>Jersey | 1984                   |
| 4    | Optics, Second<br>Edition                          | Ajoy Ghatak, | Tata McGraw Hill,            | 2013                   |

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | M   | S   | S   |
| CO2 | S   | S   | S   |
| CO3 | M   | S   | M   |
| CO4 | M   | M   | S   |

#### **SEMESTER-IV**

| CORE - XII | M.Sc - PHYSICS   | 2019 - 2020              |  |
|------------|------------------|--------------------------|--|
| M19PPH12   | CONDENSED MATTER | CONDENSED MATTER PHYSICS |  |
| CREDITS: 4 |                  |                          |  |

# **Objectives**

The present core course is considered as one of the most unique research course in Physics and will be basic platforms for researchers and scientists.

#### **Course outcomes**

On the successful completion of the course, students will be able to

| СО  | Statement                                                                          | Knowledge<br>Level |
|-----|------------------------------------------------------------------------------------|--------------------|
| CO1 | Familiar with crystallographic concepts and their bondings                         | K1                 |
| CO2 | Understand the lattice vibrations and thermal properties in crystal systems        | K2                 |
| СОЗ | Discuss in detail about various theories involving to understand matters in detail | КЗ                 |
| CO4 | Elaborate magnetic, dielectric and superconducting behaviors in detail             | K4                 |

# UNIT - I : Crystallography and Bonding

Reciprocal lattices -Vector development of reciprocal lattice -Properties of the reciprocal lattice - Reciprocal lattice to bcc lattice and fcc lattice - Bragg's condition in terms of reciprocal lattice - Crystal diffraction-Neutron and electron diffraction Brillouin Binding energy of ionic crystals - Madelung constant - Cohesive energy. Crystals of inert gases - Vanderwaal's interaction - London interaction -Cohesive energy.

#### UNIT - II : Lattice Vibrations and Thermal properties

Vibration of monoatomic lattices- Lattices with two atoms per primitive cell-Quantization of lattice vibrations- Phonon momentum - Inelastic scattering of neutrons by phonons. Lattice heat capacity - Einstein model - Density of mode in one-dimension and three- Dimension - Debye model of the lattice heat capacity - Thermal conductivity - Umklapp process.

# UNIT - III: Free Electron theory, Energy Bands and Semiconductor Crystals

Energy levels and density of orbitals - Fermi-Dirac distribution - Free electron gas in three dimensions - Heat capacity of the electron gas - Electrical conductivity and Ohm's law - Motion in magnetic fields - Hall effect - Thermal conductivity of metals - Nearly free electron model - Electron in a periodic potential - Semiconductors - Band gap - Effective mass -Intrinsic carrier concentration.

# UNIT - IV: Diamagnetism, Paramagnetism, Ferromagnetism and Antiferromagnetism

classical theory of Diamagnetism Langevin and Paramagnetism-Weiss theory- Quantum theory of Paramagnetism - Demagnetization of a paramagnetic salt - Paramagnetic susceptibility of conduction electrons -Hund's rules- Kondo effect. Ferroelectric order - Curie point and the integral- Thermal excitationorderexchange Ferromagnetic Antiferromagnetic order -Antiferromagnetic Magnons - Ferromagnetic domains - Origin of domains - Coercive force and hysteresis.

#### UNIT - V: Dielectrics, Ferroelectrics and Superconductivity

Local Macroscopic electric fieldelectrical field Dielectric constant and Polarizability - Classius-Mossotti equation -Ferroelectric domains. Occurrence of Superconductivity - Meissner effect transition-Thermodynamics of Superconducting London equation-Coherence length- BCS theory - Flux Quantization - Type-I and Type-II Superconductors -Josephson tunneling effect- DC and AC Josephson effect-**SQUID** Recent developments in high Temperature Superconductivity- Application of superconductors.

# **BOOKS FOR STUDY AND REFERENCE**

| S.No | Title of the Book                      | Author                     | Publisher                                | Year of<br>Publication |
|------|----------------------------------------|----------------------------|------------------------------------------|------------------------|
| 1    | Solid State Physics                    | S.L.Gupta &<br>Dr.V.Kumar. | Vikas publishing Ltd                     | 1978                   |
| 2    | Introduction to Solid<br>State Physics | C. Kittel                  | Wiley Eastern                            | 1977                   |
| 3    | Solid State Physics                    | S. O. Pillai               | New Age International (p) Ltd, New Delhi | 1959                   |
| 4    | Solid State Physics                    | A. J. Dekker               | Mac Millen, Madras                       | 1971                   |

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | M   | M   | S   |
| CO2 | M   | S   | M   |
| CO3 | S   | M   | M   |
| CO4 | S   | S   | S   |

| CORE - XIII | M.Sc- PHYSICS                | 2019– 2020 |
|-------------|------------------------------|------------|
| M19PPH13    | NUCLEAR AND PARTICLE PHYSICS |            |
| CREDITS: 4  |                              |            |

Nuclear and particle Physics course deals in detail about the structure and properties of the nucleus through various models and theories. It also gives the basic ideas about nuclear interactions, reactions, decays and about elementary particles.

#### **Course outcomes**

On the successful completion of the course, students will be able to

| СО  | Statement                                                                     | Knowledge<br>Level |
|-----|-------------------------------------------------------------------------------|--------------------|
| CO1 | Remember the models of nucleus and elementary particles                       | K1                 |
| CO2 | Understand the reactions and interactions between the nucleus                 | K2                 |
| CO3 | Familiar in nuclear decays and elementary particles and their classifications | КЗ                 |
| CO4 | Apply various models and theories to understand nuclear structure             | K4                 |

#### Unit - I: Nuclear Structure

Distribution of nuclear charge - spin and magnetic moment - determination of nuclear mass - Binding Energy - Nuclear stability - Mass parabolas - Nuclear Shell model - Liquid drop model - Optical Model - Collective Model.

# Unit - II: Nuclear Interactions

Exchange forces - Yukawa's meson theory - Yukawa potential - Ground state of deuteron - Low energy n-p scattering - effective range - spin dependence and charge independence of nuclear forces.

#### Unit - III: Nuclear Reactions

Types of reactions and Energetics of nuclear reactions - conservation laws - Q Value - Scattering and reaction cross sections - Compound nucleus - Reciprocity theorem - Breit and Wigner Dispersion formula - stripping and pickup reactions.

#### Unit - IV: Radioactive Decays

Alpha decay - Geiger - Nuttal law - Gamow's Theory - Neutrino hypothesis - Fermi theory of beta decay - Selection rules - Gamma decay - Selection rules - Internal conversion

### **Unit - V : Elementary Particles**

Types of interactions between elementary particles - Leptons - Hadrons - Mesons - Hyperons - Pions - Gell - Mann Okubo mass formula for octet and decaplet - SU(2) - SU(3) Multiplet - Quark model - Color and flavor - weak and strong interactions.

#### **BOOKS FOR STUDY AND REFERENCE**

| S.No | Title of the Book                                | Author                     | Publisher                           | Year of<br>Publication |
|------|--------------------------------------------------|----------------------------|-------------------------------------|------------------------|
| 1    | Nuclear Physics,                                 | R.P. Roy and<br>B.P. Nigam | Age International<br>Ltd, New Delhi | 2005                   |
| 2    | Concepts of<br>Nuclear Physics                   | B.L. Cohen,                | Tata McGraw Hill,<br>New Delhi,     | 1983                   |
| 3    | Introduction to<br>Atomic and Nuclear<br>Physics | H.Semat,                   | Chapman and Hall,<br>New Delhi      | 1983                   |
| 4    | Nuclear and particle Physics                     | W.S.C<br>Williams ,        | Claredon Press,<br>London,          | 1981                   |

# Mapping with Programme Outcomes

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | S   | S   | M   |
| CO2 | M   | S   | M   |
| CO3 | M   | M   | S   |
| CO4 | M   | M   | S   |

| CORE - XIV | M.Sc- PHYSICS | 2019– 2020 |
|------------|---------------|------------|
| M19PPH14   | SPECTROSCO    | DV         |
| CREDITS: 4 | SPECTROSCOPY  |            |

# **Objectives**

The present title gives brief ideas about molecular, rotational and vibration spectroscopy. It also offers the principle and instrumentations of each spectroscopic technique in brief.

#### **Course outcomes**

On the successful completion of the course, students will be able to

| СО  | Statement                                                                                             | Knowledge<br>Level |
|-----|-------------------------------------------------------------------------------------------------------|--------------------|
| CO1 | Know about vibrational, rotational and molecular spectroscopic techniques                             | K1                 |
| CO2 | Understand the mechanisms of rotational and molecular spectroscopic techniques                        | K2                 |
| CO3 | Identify the suitability of each spectroscopic techniques                                             | КЗ                 |
| CO4 | Apply these spectroscopic techniques for<br>qualitative and quantitative analyses of<br>the molecules | K4                 |

### **UNIT - I : IR - Spectroscopy**

Principle and theory of Infrared spectroscopy - Far and Near IR absorption spectroscopy - Mid and Near IR reflectance spectroscopy- Photo acoustic IR spectroscopy - Dispersive IR spectrometer - IR Imaging - FT - IR spectroscopy - Vibrational frequencies and qualities analysis - sampling methods - Instrumentation- Applications.

### **UNIT - II : Raman Spectroscopy**

FT Raman spectroscopy - degree of depolarization - structure determination using IR and Raman spectroscopy - Resonance Raman spectroscopy - Coherent anti - Stokes Raman spectroscopy - Inverse Raman and

surface Enhanced Raman spectroscopy - principles, techniques and applications - non - linear Raman spectroscopy.

UNIT - III: Electronic Spectra: Florescence & Phosphorescence Spectroscopy Electronic Excitation of Diatomic Species - Vibrational Analysis of Band Systems of Diatomic Molecules - Deslandre's Table - Intensity Distribution - Franck Condon Principle - Rotational Structure of Electronic Bands - Resonance and Normal Fluorescence - Intensities of Transitions - phosphorescence Population of Triplet State and Intensity - Experimental Methods - Applications of Florescence and Phosphorescence.

#### UNIT - IV: NMR & NQR Spectroscopy

NMR Spectroscopy: Quantum Mechanical and Classical Description - Bloch Equation - Relaxation Process - Experimental Technique - Principle and Working of High Resolution NMR Spectrometer - Chemical Shift NQR Spectroscopy: Fundamental Requirements - General Principle - Experimental Detection of NQR Frequencies - Interpretation and Chemical Explanation of NQR Spectroscopy.

# UNIT - V : ESR & Mossabauer Spectroscopy

ESR Spectroscopy: Basic Principles - Experiments - ESR Spectrometer - Reflection Cavity and Microwave Bridge - ESR Spectrum - Hyperfine Structure Mossabauer Spectroscopy: Mossabauer Effect - Recoilless Emission and Absorption - Mossabauer Spectrum - Experimental Methods - Hyperfine Interaction - Chemical Isomer Shift - Magnetic Hyperfine and electric Quadrupole Interaction.

# **BOOKS FOR STUDY AND REFERENCE**

| S.No | Title of the Book                            | Author                       | Publisher                                | Year of<br>Publication |
|------|----------------------------------------------|------------------------------|------------------------------------------|------------------------|
| 1    | Fundamentals of<br>Molecular<br>Spectroscopy | C.N. Banwell,.               | Tata MCGraw Hill                         | 1972                   |
| 2    | Spectroscopy Vol. 1,                         | B.P. Straughan and Walkar, , | Chapman and Hall                         | 1976                   |
| 3    | Basic Principles of Spectroscopy             | D.N.<br>Sathyanarayana       | New Age<br>International<br>Publications | 2004                   |
| 4    | Basic Principles of Spectroscopy             | Raymond<br>Chang,            | McGraw Hill<br>Koyakusha Ltd             | 1980                   |

# **Mapping with Programme Outcomes**

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | S   | S   | S   |
| CO2 | S   | M   | M   |
| CO3 | M   | M   | M   |
| CO4 | M   | S   | M   |

| Elective - IV | M.Sc- PHYSICS                 | 2019- 2020 |
|---------------|-------------------------------|------------|
| M19PPHE10     | CHARACTERIZATION OF MATERIALS |            |
| CREDITS: 4    |                               |            |

### **Objectives**

The present elective course focuses on characterization of materials in order to know the suitability of the materials for specific applications. It describes in detail completely about crystal growth, thin film technology, XRD, UV etc., and their applications.

#### **Course outcomes**

On the successful completion of the course, students will be able to

| СО  | Statement                                                                                          | Knowledge<br>Level |
|-----|----------------------------------------------------------------------------------------------------|--------------------|
| CO1 | Remember crystals and their growth technologies                                                    | K1                 |
| CO2 | Familiarize with thin film technology                                                              | K2                 |
| CO3 | Analyze suitable characterization techniques based on the choice of the materials and applications | КЗ                 |
| CO4 | Apply these technologies in MEMS and R&D                                                           | K4                 |

#### UNIT - I: Nucleation and Growth

The crystalline state - concept of crystal growth - historical review - Importance of crystal growth - crystal growth theory : classical theory - Gibbs - Thomson equation- kinetic theory of nucleation - Energy of formation of a nucleus - kinetics of thin film formation - Film growth - five stages - Nucleation theories - In corporation of defects and impurities in films - Deposition parameters and grain size - structure of thin films.

#### **UNIT - II: Growth Techniques**

Solution growth technique: low temperature solution growth: solution - Solubility -constant temperature bath an crystallizer - seed preparation and mounting - slow cooling and solvent evaporation methods. Gel growth

technique: Principle - various types - structure of gel - Importance of gel - Experimental procedure - Advantage of gel method. Melt technique: Bridgman technique - czochralski technique - Experimental arrangement - Growth process. Vapous technique: physical vapour deposition - chemical vapour deposition (CVD) - chemical vapour transport.

#### Unit - III: Thin Film Deposition Techniques

Thin films - Introduction to vaccum technology -deposition techniques - physical methods - resistive heating , electron beam cun and laser gun evaporation - sputtering : Reactive sputtering , radio frequency sputtering - chemical methods - spray pyrolsis - reparation of transport conducting oxides.

#### Unit - IV: Characterization Technique

X-ray Diffraction (XRD) - power and single crystal - fourier transform infrared analysis - FT -Raman analysis - Elemential dispersive x-ray analysis (EDAX) - scanning electron microscopy (SEM) - UV -VIS Spectrometer Vickers micro hardness - Auger emission spectroscopy. Photolumine scene (PL) - UV -Vis -IR spectrometer- AFM- Hall effect - SIMS - X-ray - photoemission spectroscopy (XPS) - dynamic light scattering - ellipsmety method.

#### Unit - V: Applications

Micro electrochemical systems (MEMS) - optoelectronic devices : LED , LASER and solar cell - polymer films - Fabrication and characterization of thin film transistor, capacitor , resistor , inductor and FET - Sensor - quantum dot - Applications of ferromagnetic and super conducting films : Data storage , Giant magneto resistance (GMR).

# **BOOKS FOR STUDY AND REFERENCE**

| S.No | Title of the Book                  | Author                               | Publisher                       | Year of<br>Publication |
|------|------------------------------------|--------------------------------------|---------------------------------|------------------------|
| 1    | Elementary crystal growth          | K.Sangawal                           | shan publisher , UK             | 1994                   |
| 2    | Crystal Growth and processes.      | P.Santhana<br>Ragavan,<br>P.Ramasamy | KRU publications.<br>Kumbakonam | 2000                   |
| 3    | Crystal Growth<br>Process          | J.C.Brice                            | John wiley publications         | 1996                   |
| 4    | Hand book of thin films Technology | L I Maissel and<br>R clang           | Mc Graw - Hill                  | 1970                   |

# Mapping with Programme Outcomes

| COs | PO1 | PO2 | PO3 |
|-----|-----|-----|-----|
| CO1 | M   | S   | S   |
| CO2 | M   | M   | S   |
| CO3 | S   | S   | M   |
| CO4 | M   | S   | S   |

| Elective -IV | M.Sc- PHYSICS  | 2019 - 2020 |
|--------------|----------------|-------------|
| M19PPHE11    | ENERGY PHYSICS |             |
| CREDITS: 4   | ENERGI PHIS    |             |

#### **Objectives**

It gives a brief idea about various types of renewable and non renewable energy sources. At the end of this course the students are able to understand the concepts of energy sources and the storage technologies.

#### **Course outcomes**

On the successful completion of the course, students will be able to

| СО  | Statement                                                          | Knowledge<br>Level |
|-----|--------------------------------------------------------------------|--------------------|
| CO1 | Receive the concepts of renewable and non renewable energy sources | K1                 |
| CO2 | Familiarize with different types of solar cells                    | K2                 |
| СОЗ | Discuss about the applications of solar cells                      | КЗ                 |
| CO4 | Apply these technologies in wind and bio mass technologies         | K4                 |

#### **UNIT I: Introduction to Energy Sources**

Energy sources – Types of energy sources – World energy futures- Energy sources and their availability – Prospects of renewable energy sources.

#### **UNIT II: Solar Cells**

Solar Cells: Solar cells for direct conversion of solar energy to electric powers – Solar cell parameter – Solar cell electrical characteristics – Efficiency – Single crystal silicon solar cells – Polycrystalline silicon solar cells – Cadmium sulphide solar cells.

#### UNIT III: Applications of Solar Energy

Solar water heating – space heating and space cooling – solar photo voltaics – agricultural and industrial process heat – solar distillation – solar pumping– solarfurnace – solar cooking – solar green house.

#### UNIT IV: Wind Energy

Base principles of wind energy conversion wind data and energy estimation – Base components of wind energy conversion systems (WECS) types of wind machines –Generating systems – scheme for electric generation – generator control – load control– applications of wind energy.

#### UNIT V: Energy from Biomass

Biomass conversion Technologies – wet and Dry process – Photosynthesisiogas Generation: Introduction – basic process and energetic – Advantages of anaerobic digestion – factors affecting bio digestion and generation of gas – Classification of Biogas plants: Continuous and batch type – the done and drum types of Bio gas plants – biogas from wastes fuel – properties of biogas – utilization of biogas.

#### **BOOKS FOR STUDY AND REFERENCE**

| S.No | Title of the Book                  | Author                        | Publisher                        | Year of<br>Publication |
|------|------------------------------------|-------------------------------|----------------------------------|------------------------|
| 1    | Principles of Solar<br>Engineering | F. Kreith and<br>J.F. Kreider | Tata McGraw Hill                 | 1978                   |
| 2    | Applied Solar Energy,              | A.B. Meinel and A.P.Meinel,   | Addison Wesley<br>Publishing Co. | 1976                   |
| 3    | Solar Energy                       | M.P.Agarwal                   | S. Chand and Co.,<br>New Delhi   | 1983                   |
| 4    | Solar Energy                       | S.P.Sukhatme                  | Tata McGraw Hill                 | 1997                   |

#### **Mapping with Programme Outcomes**

| COs   | PO1 PO2 |   | PO3 |
|-------|---------|---|-----|
| CO1 S |         | S | S   |
| CO2   | S       | M | M   |
| CO3   | S       | S | M   |
| CO4   | M       | M | M   |

| Elective -IV | M.Sc- PHYSICS             | 2019- 2020 |  |  |  |  |  |
|--------------|---------------------------|------------|--|--|--|--|--|
| M19PPHE12    | COMMINICATION ELECTRONICS |            |  |  |  |  |  |
| CREDITS: 4   | COMMUNICATION ELECTRONICS |            |  |  |  |  |  |

### **Objectives**

It gives a brief idea about various communication technologies being used by the people in various sectors.

#### **Course outcomes**

On the successful completion of the course, students will be able to

| СО  | Statement                                                                      | Knowledge<br>Level |
|-----|--------------------------------------------------------------------------------|--------------------|
| CO1 | Receive the concepts of transmission and reception in communication technology | K1                 |
| CO2 | Familiarize with codes and digital signals                                     | K2                 |
| CO3 | Discuss about microwaves for communication purpose                             | КЗ                 |
| CO4 | Apply these technologies in RADAR & TV                                         | K4                 |

#### UNIT - I: Antennas & Wave Propagation

Radiation field and Radiation resistance of a short dipole antenna -Grounded  $\lambda$  /4 Antenna-Ungrounded  $\lambda$  /2 Antenna- Antenna Arrays-Broadside and End Side Arrays-Antenna Gain-Directional High Frequency Antennas- Sky Wave Propagation-Ionosphere-Ecles & Larmor Theory-Magneto Ionic Theory-Ground Wave Propagation.

#### UNIT - II: Pulse Code and Digital Modulation Techniques

Sampling theorem - Low - Pass and Band - Pass signals, PAM, Channel BW for a PAM signal. Natural sampling. Flat-top sampling, Signal recovery through Holding, Quantization of signals, PCM transmission, quantization of noise, differential PCM Delta Modulation, Adaptive Delta modulation, CVSD. Signal to noise ratio in PCM and Delta Modulations - ASK, FSK, BPSK, DPSK, QPSK, QASK, MSK and QAM.

#### UNIT - III : Microwaves(Operation only)

Microwave Generation-Multicavity Klystron-Reflex Klystron-Magnetron-Travelling WaveTubes (TWT) and other Microwave Tubes-MASER-Gunn Diode. Broad Band Communication Systems Multiplexing - Frequency division - Time division. Short and medium Haul systems: Coaxial cables - fibre optic link - Microwave link - Tropospheric Scatter links. Long Haul system: Submarine cables.

#### UNIT - IV: Radar and Television

Elements of a Radar System-Radar Equation-Radar Performance Factors-Radar Transmitting Systems- Radar Antennas-Duplexers-Radar Receivers and Indicators-Pulsed Systems-Other Radar Systems. Colour TV Transmission and Reception - Colour mixing principle - Colour Picture Tubes -Delta Gun picture tube - PIL colour picture tube - Cable TV, CCTV and Theatre TV.

#### **UNIT - V: Optical Fibres**

Propagation of Light in an Optical Fibre-Acceptance Angle-Numerical Aperture-Step and Graded Index Fibres-Optical Fibre as a Cylindrical Wave Guide-Wave Guide Equations-Wave Equations in Step Index Fibres- Fibre Losses and Dispersion-Applications. Satellite communication Orbital Satellites, Geostationary Satellites, Orbital Patterns, satellite system link models, satellite system parameters, satellite system link equation, Link budget. INSAT communications satellites.

# BOOKS FOR STUDY & REFERENCE:

| S.No | Title of the Book                          | Author                       | Publisher                           | Year of<br>Publication |
|------|--------------------------------------------|------------------------------|-------------------------------------|------------------------|
| 1    | Electronic<br>Communication<br>System      | George<br>Kennedy &<br>Davis | Tata McGraw Hill<br>4th edition.    | 1989                   |
| 2    | Principles of<br>Communication<br>Systems  | Taub and schilling,          | Second edition, Tata<br>McGraw Hill | 1991                   |
| 3    | Electronic<br>Communications               | Dennis Roddy<br>& Coolen     | Prentice Hall of<br>India           | 1995                   |
| 4    | Advanced electronics communication Systems | Wayne Tomasi                 | Prentice Hall, Inc.,                | 1998                   |

# **Mapping with Programme Outcomes**

| COs   | PO1 PO2 |   | PO3 |
|-------|---------|---|-----|
| CO1 M |         | S | M   |
| CO2   | S       | M | S   |
| CO3   | M       | M | M   |
| CO4   | S       | M | M   |

(Autonomous)

Affiliated to Periyar University, Salem.

Accredited by NAAC with 'A' Grade & Recognized u/s 2(f) and 12(B) of the UGC Act 1956

Kalippatti – 637 501, Namakkal (Dt), Tamil Nadu.

#### DEPARTMENT OF PHYSICS

List of Courses Focusing on Employability/ Entrepreneurship/ Skill Development (Regulations – 2016)

Programme: M.Sc. PHYSICS

| S.No. | Course Name                        | Course<br>Code | Employability | Employability Entrepreneurship |   |
|-------|------------------------------------|----------------|---------------|--------------------------------|---|
| 1.    | Classical Mechanics                | M16PPH01       | <b>√</b>      | _                              | - |
| 2.    | Energy Physics                     | M16PPHE01      | -             | _                              | ✓ |
| 3.    | Statistical Mechanics              | M16PPH04       | ✓             |                                | _ |
| 4.    | Advanced Electronics               | M16PPH05       | ✓             | -                              | - |
| 5.    | Nanoscience And<br>Technology      | M16PPHE05      | ✓             |                                | - |
| 6.    | Microprocessors & Microsontrollers | M16PPH09       | <b>✓</b>      | •                              | - |
| 7.    | Communication<br>Electronics       | М16РРНЕ09      | -             |                                | ✓ |

Head of the Department

Dr. V. HARIHARAN, M.Sc., M.Phil., Ph.D., Asst. Professor & Head, Department of Physics, Mahendra Arts & Science College, Kalipatti-637 501. Principal
PRINCIPAL
MAHENDRA ARTS & SCIENCE COLLEGE
(Autonomous)

Kalippatti (PO) - 637 501, Namakkal (DT

PRINCIPAL

MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)

Kaliopatti (PO) - 637 501, Namakkal (DT

(Autonomous)

Affiliated to Periyar University, Salem.

Accredited by NAAC with 'A' Grade & Recognized u/s 2(f) and 12(B) of the UGC Act 1956

Kalippatti – 637 501, Namakkal (Dt), Tamil Nadu.

#### **DEPARTMENT OF PHYSICS**

List of Courses Focusing on Employability/ Entrepreneurship/ Skill Development (Regulations – 2016)

Programme: M.Sc. PHYSICS

| S.No. | Name of the Course                    | Name of the Course Code |                   | Year of introduction (during the last five years) |  |
|-------|---------------------------------------|-------------------------|-------------------|---------------------------------------------------|--|
| 1.    | Classical Mechanics                   | M16PPH01                | Employability     | 2016 - 2017                                       |  |
| 2.    | Energy Physics                        | М16РРНЕ01               | Skill Development | 2016 - 2017                                       |  |
| 3.    | Statistical Mechanics                 | M16PPH04                | Employability     | 2016 - 2017                                       |  |
| 4.    | Advanced Electronics                  | M16PPH05                | Employability     | 2016 - 2017                                       |  |
| 5.    | Nanoscience And Technology            | М16РРНЕ05               | Employability     | 2016 - 2017                                       |  |
| 6.    | Microprocessors &<br>Microsontrollers | M16PPH09                | Employability     | 2016 - 2017                                       |  |
| 7.    | Communication Electronics             | М16РРНЕ09               | Skill Development | 2016 - 2017                                       |  |
|       |                                       |                         |                   |                                                   |  |

Head of the Department

Dr. V. HARIHARAN, M.Sc., M.Phil., Ph.D., Asst. Professor & Head, Department of Physics, Mahendra Arts & Science College, Kalipatti-637 501. Principal PRINCIPAL MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)
[alippatti (PO) - 637 501, Namakkal (DT)

act

PRINCIPAL
MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)
Kalippatti (PO) - 637 501, Namakkal (DT

(AUTONOMOUS)

(Accredited by NAAC & Recognized under u/s 2(f) and 12(B))





# **DEPARTMENT OF PHYSICS**

M.Sc. Physics

COURSE STRUCTURE AND SYLLABUS Choice Based Credit System (CBCS) (2016-2017) ONWARDS



(Autonomous)

Accredited 'A' by NAAC with "A" grade & Recognized by u/s 2(f) and 12(B) of the UGC Act 1956
Affiliated to Periyar University

# DEPARTMENT OF PHYSICS PG – Syllabus (M.Sc)

#### 1. OBJECTIVES OF THE COURSE

The recent developments in Physical sciences had been included in the enriched M.Sc., (Physics) Syllabus to meet out the present day needs of Academic and Research Institutions and Industries.

#### 2. DURATION OF THE PROGRAMME

The two year post - graduate programme in M.Sc., Physics consists of four semesters.

#### 3. ELIGIBILITY

A candidate who has passed the B.Sc., Degree Examination in Branch III Physics Main or B.Sc., in Applied Physics or B.Sc., Physics - (Vocational) of this University or an examination of some other universities accepted by the Syndicate as equivalent there to shall be permitted to appear and qualify for the M.Sc., Physics degree Examination of this University after a course of two academic years.

#### 4. COURSE OF STUDY

The course of study for the degree shall be in Physics under semester system with internal according to a syllabus prescribed from time to time.

For each paper -100 Marks

Project -200 Marks

#### 5. EXAMINATION

The theory examination shall be three hours duration to each paper at the end of each year. The candidates failing in each subject(s) will be permitted to appear for each failed subject(s) in the subsequent examination. The practical examination for PG. Course should be conducted at the end of each semester.

# **6. QUESTION PAPER PATTERN**

# **Question paper pattern for Examinations**

Time - 3 Hours Maximum - 75 Marks

# **Passing Minimum - 38 Marks**

Part – A (5x5=25 Marks)

Part – B (5x10=50 Marks)

**Answer all questions (Either or Type)** 

#### 7. PASSING MINIMUM

In order to pass a paper 50 % Minimum is compulsory

#### 8. CLASSIFICATION OF SUCCESSFUL CANDIDATES

Candidates who obtain not less than 75 percent of the marks in the aggregate shall be deemed to have passed the examination in First class with Distinction provided they pass all the examinations prescribed for the course at the first appearance. Candidate who secures not less than 60 percent of the aggregate marks in the whole examination shall be declared to have passed the examination in the First class provided they pass all the examinations prescribed for the course within the period of two academic years from the year of completion of the course.

Candidates who secure not less than 50 percent of the aggregate marks in the whole examination but below 60 percent shall be declared to have passed the examination in the second class provided they pass all the examinations prescribed for the course within a period of two academic years from the year completion of course. Candidates who pass all the examinations prescribed for the course in the first appearance only are eligible for ranking.

#### 9. COMMENCEMENTS OF THIS REGULATION

These regulation and syllabus shall take effect from the academic year 2016 – 2017, that is, for students who are admitted to the first year of the course during the academic year 2015-2016 and thereafter.

# 10. TRANSITORY PROVISION

Candidates who are admitted to the P.G. Course of study before 2016-2017 shall be permitted to appear for the examinations under those regulations for a period for three years i.e. up to and inclusive of the examination of April / May 2012. Thereafter they will be permitted to appear only under regulations then in force.



(Autonomous)
Accredited 'A' by NAAC & Recognized by u/s 2(f) and 12(B) of the UGC Act 1956 Affiliated to Periyar University

# **DEPARTMENT OF PHYSICS (2016 Regulations) PG** – Syllabus (M.Sc)

#### **COURSE STRUCTURE**

| SEM | SUBJECT CODE | COURSE              | SUBJECT<br>TITLE           | Hrs/<br>Week | CREDIT | INT.<br>MARK | EXT.<br>MARK | MARKS |
|-----|--------------|---------------------|----------------------------|--------------|--------|--------------|--------------|-------|
|     | M16PPH01     | Core I              | Classical mechanics        | 7            | 4      | 25           | 75           | 100   |
| I   | M16PPH02     | Core II             | Mathematical physics       | 7            | 4      | 25           | 75           | 100   |
|     | М16РРН03     | Core III            | Quantum<br>mechanics-I     | 6            | 4      | 25           | 75           | 100   |
|     | М16РРНЕ01    | Elective I          | Energy Physics             | 6            | 4      | 25           | 75           | 100   |
|     | М16РРНР01    | Core<br>practical I | General<br>experime<br>nts | 4            | -      | 25           | 75           | 100   |
|     | M16PPH04     | Core IV             | Statistical mechanics      | 6            | 4      | 25           | 75           | 100   |
|     | M16PPH05     | Core V              | Advanced<br>Electronics    | 6            | 4      | 25           | 75           | 100   |

|     | М16РРН06  | Core VI              | Electromagne tic theory                  | 5 | 4 | 25 | 75 | 100 |
|-----|-----------|----------------------|------------------------------------------|---|---|----|----|-----|
|     | М16РРНЕ02 | Elective II          | Nano Science<br>& Nano<br>Technology     | 5 | 4 | 25 | 75 | 100 |
| II  | M16PCSED2 | EDC I                | Fundamentals of Computers & Applications | 2 | 4 | 25 | 75 | 100 |
|     | М16РРНР01 | Core<br>practical I  | General<br>experime<br>nts               | 4 | 6 | 25 | 75 | 100 |
|     | М16РРНР02 | Core<br>practical II | Electroni<br>cs<br>experime<br>nts       | 4 | 6 | 25 | 75 | 100 |
|     | M16PHR01  |                      | Human Rights                             | 2 | 2 | 25 | 75 | 100 |
|     | M16PPH07  | Core VII             | Condensed<br>Matter Physics              | 6 | 4 | 25 | 75 | 100 |
|     | M16PPH08  | Core VIII            | Quantum<br>Mechanics - II                | 6 | 4 | 25 | 75 | 100 |
| III | М16РРН09  | Core IX              | Microprocessor<br>and<br>Microcontroller | 6 | 4 | 25 | 75 | 100 |
|     | М16РРНЕ03 | Elective<br>III      | Electronic communication                 | 6 | 4 | 25 | 75 | 100 |

|    | M16PVE01    | VALUE EDU-<br>I       | Repairing electroni c applianc es            | 2   | 2  | 25  | 75   | 100  |
|----|-------------|-----------------------|----------------------------------------------|-----|----|-----|------|------|
|    | М16РРНР03   | Core<br>practical III | Microprocessor<br>and<br>Microcontrol<br>ler | 4   | ı  | 25  | 75   | 100  |
|    | M16PPH10    | Core X                | Nuclear and particle physics                 | 6   | 4  | 25  | 75   | 100  |
|    | M16PPH11    | Core XI               | Molecular<br>spectroscopy                    | 6   | 4  | 25  | 75   | 100  |
| IV | M16PPH12    | Core XII              | Computatio nal methods and Programming       | 5   | 4  | 25  | 75   | 100  |
|    | М16РРНЕ04   | Elective IV           | Material synthesis and characterization      | 5   | 4  | 25  | 75   | 100  |
|    | М16РРНР03   | Core practical        | Microprocessor<br>and<br>Microcontroller     | 4   | 6  | 25  | 75   | 100  |
|    |             | MAJOR                 | Project viva<br>voce                         | 4   | 8  |     | 200  | 200  |
|    | Grand Total |                       |                                              | 120 | 98 | 525 | 1775 | 2300 |

#### **CLASSICAL MECHANICS (M16PPH01)**

#### Unit -I Lagrangian Formulation

Limitation of Newton's method —Centre of Mass- Mechanics of system of Particles-Constraints- Generalized co-ordinates- D'Alembert's principle and Lagrangian equation of motion for the monogenic system with holonomic constrains —and with non-holonomic constraints — variational principles and Lagrangian equation for holonomic and non-holonomic systems-Simple application-Double pendulum —Atwood's machine- Bead sliding on rotating wire in a force.

#### Unit -II Hamiltonian Formulation

Legendre transformations and the Hamilton's equations of motion -Cyclic co-ordinates and Conservation theorems- Deduction of Hamilton's Principle from the D' Alembert's Principle-Deduction of Hamilton's equations from the modified Hamilton's principle-Principle of least action-Canonical transformations.

#### Unit -III Poisson's Brackets & Hamilton-Jacobi Theory

Poisson's Bracket-Liouville's theorem-Hamilton-Jacobi Theory –Action and Angle variables – Kepler's –problem-Simple applications of Hamiltonian dynamics: compound pendulum –two dimensional harmonic oscillator.

#### **Unit –IV Small Oscillations and Rigid-body Dynamics**

General theory of small oscillation - Lagrange's equation of motion for small oscillation-solution of eigenvalue equation-normal co-ordinates and normal frequencies of vibration-Examples:Two coupled pendulum –Vibration of a linear triatomic molecule.

Euler's angle - Equation of motion of Rigid body -Euler's equations- the motion of a symmetric top under action of gravity.

#### **Unit –V Special Relativity**

Lorentz transformation-consequences of Lorentz transformation:- Length contraction: simultaneous, time dilation-Force in relativistic mechanics-Minkowski space and Lorentz transformation-orthogonal transformation-Thomas Precession- four vectors-covariant Lagrangian formulation for a freely moving particle.

# **Books for Study**

- 1. Classical Mechanics H.Goldstein, NarosaPublishing (2008)
- 2. Classical Mechanics V.B. Bhatia Narosa Publishing (1997)
- 3. Classical Mechanics J.C. Updhaya, Himalaya Publishing House (2003)

# **Books for Reference**

- 1. Classical Mechanics N.C.Rana and P.S. Joag, Tata McGraw-Hill (1991).
- 2. Classical Mechanics –Gupta & Kumar.

#### **MATHEMATICAL PHYSICS (M16PPH02)**

#### **Unit - I Vector Analysis**

The scalar and vector fields- Gradient, Divergence, curl and Laplacian - Orthogonal and curvilinear co-ordinates - Rectangular, cylindrical and spherical co-ordinates. Vector integration - Line integrals, surface integrals and volume integrals - Gauss Divergence theorem - Stokes theorem and Green's theorem.

#### **Unit - II Fourier's and Laplace's integral transforms**

Fourier transform- properties of transform-Fourier transform of a derivative- Fourier's sine and cosine transform of a derivative- Finite Fourier transforms-Simple application of Fourier transforms of integral - Inverse Laplace transform - Properties of inverse Laplace transforms- Properties of inverse Laplace transform -convolution theorem-Applications of Laplace Transform.

#### **Unit - III Complex variable**

Function of complex variables - limit-continuity- Differentiability- Analytic Function- Cauchy-Rieman condition - Differential equation - Cauchy Integral theorem - Cauchy Integral formula— Moreva's theorem - Liouville's theorem - Taylor's series - Laurent's series-singularities of an analytical fuction - Residues - Cauchy Residue theorem - Evaluation of definite integrals contour integration.

#### **Unit - IV Special Functions**

Legendre, Bessel, Hermite and Laguerre differential equations - power series solutions Generating functions - Recursion relations - Rodrigue's formula - Orthogonality relations.

#### Unit - V Beta, Gamma, Delta Functions

Definition of gamma function - Fundamental property of gamma function and values of gamma function - Definition of beta function - Different forms of beta function - Relationship between beta and gamma functions - Reduction of different integrals to gamma function - Dirac delta function - Derivatives of delta function.

#### **BOOKS FOR STUDY AND REFERENCE**

- 1. M. R. Spiegel, Vector Analysis, Schaum'a outline series, McGraw Hill, New York, 1974.
- 2. L.A. Pipes and L.R. Harvill, Applied Mathematics for Engineers and Physicists, McGraw Hill, London, 1970.
- 3. P. K. Chattopadhyay, Mathematical Physics, Wiley Eastern, New Delhi, 1992.
- 4. B. D. Gupta, Mathematical Physics, Vikas Publishing House Pvt. Ltd, New Delhi, 2004.
- 5. D. G. Zill and M. R. Cullen, Advanced Engineering Mathematics, 3rd Ed. Narosa, New Delhi, 2006.
- 6. E. Kveyszig, Advanced Engineering Mathematics, Wiley Eastern, New Delhi, 1983.
- 7. H. K. Dass, Mathematical Physics, S. Chand & Co, New Delhi, 2003.
- 8. S. S. Rajput, Mathematical Physicsc, Pragati Pragasan, Meerut, 11th Edition, 1996.

#### **QUANTUM MECHANICS-I (M16PPH03)**

#### **Unit – I : Foundations of wave mechanics**

Equation of motion of matter waves- Schroedinger equation for the free particle - Physical interpretation of wave function-normalized and orthogonal wave functions-expansion theorem-admissibility conditions - solution of Schroedinger wave equation - stationary state solutions operator associated with different observables - expectation values - probability current density- Ehrenferts theorem. Postulates of wave mechanics-representation of states-dynamical variables-commutation relations - expectation values-linear operators adjoint and self-adjoint operators-degeneracy-eigen value, eigen functions - observables: completeness and normalization of eigen functions-Physical interpretation of eigen values and eigen functions and expansion coefficients- momentum eigen functions-Uncertainty principle-states with minimum value-commuting observables: removal of degeneracy-evolution of system with time: constant of motion. Interacting and Non-interacting systems- System of identical Particles: symmetric and antisymmetric wave functions - Exclusion principle.

#### **Unit - II: Stationary state and eigen spectrum**

Stationary states: time independent Schrodinger equation - Particle in a square well potential - Bound states -eigen values, eigen functions - nonlocalized states -potential barrier -quantum mechanical tunneling - reflection at barriers and wells-multiple potential well -Splitting energy levels-energy bands-Kronig - Penny model. Exactly soluble Eigenvalue Problems The simple harmonic oscillator: Energy Eigenvalues and energy eigen functions - properties of stationary states- abstract operator- eigen value spectrum-eigen functions- Angular momentum: operators- Separation of variables-eigen values and eigen functions- spherical harmonics - physical interpretation -Angular momentum in stationary states of systems with spherical symmetry: rigid rotator - diatomic particles-energy level spacing - particle in a potential - radial wave function - Hydrogen atom: solution of the radial equation - stationary state wave functions - bound states.

### **Unit - III: Approximation methods for Time - independent Problems**

Perturbation theory for discrete levels: Equations in various orders of perturbation theory - Non-degenerate case-first and second order anharmonic oscillator-Degenerate case- removal of degeneracy - Effect of electric field (stark effect) on ground state of Hydrogen atom - two electron atom. Variation method: Variation Principle - for excited states- ground state of Helium atom - hydrogen atom ion - WKB approximation - one dimensional Schrodinger equation-Asymptotic solution-validity of WKB approximation-solution near a turning point - connection formula for penetration barrier - Bohr-Sommer field quantization condition- tunneling through a potential barrier.

#### Unit - IV: Matrix formulation of quantum theory and equation of motion

Quantum state vectors and functions- Hilbert space-Dirac's - Bra-Ket notation-basis in Hilbert space - dynamical variables and linear operators - abstract operators - self adjoint - eigen value, eigen vectors - unitrary operators - representations of state vector-dynamical variables as matrix operators - commutation relation - diagonalization Harmonic oscillator - Schrodinger, Heisenberg and Interaction representation - coordinates and momentum representations - symmetries and conservation laws

#### **Unit -V: Angular momentum**

Angular momentum operators-commutation rules-eigen value spectrum matrix representation of J in the |jm> basis - spin angular momentum - spin 1/2 , spin-1, total wave function- addition of angular momenta- Clebsch-Gordan coefficients-spin wave functions for a system of two spin-1/2 particles. Identical Particles and spin Identical Particles - symmetry and Antisymmetric wave function - exchange degeneracy - Spin and statistics: Pauli's exclusion Principle- Slater determinant- collision of identical particles-spin and Pauli's matrices- density operator and density matrix.

#### **BOOKS FOR STUDY AND REFERENCE**

- 1. A Text book of Quantum Mechanics P. M. Mathews and K.Venkatesan; Tata McGraw -Hill Publications
- 2. Quantum Mechanics Satya Prakash; Kedar Nath Ram Nath and Co. Publications
- 3. Quantum Mechanics (5th Edition) Theory and Applications by A.K.Ghatak and Lokanathan; Macmillan India Ltd Publication.
- 4. Principle of Quantum Mechanics (2nd Edition) R.Shankar; PlenumUS Publication.
- 5. Quantum Mechanics Leonard I. Schiff; McGraw-Hill International Publication.
- 6. Quantum Mechanics (2nd Edition )- V. K. Thankappan, New Age International (P) Ltd. Publication.
- 7. Quantum Mechanics (3nd Edition) E. Merzbacher; John Wiley Interscience Publications.
- 8. Quantum Mechanics Pauling & Wilson.

#### **ENERGY PHYSICS (M16PPHE01)**

#### UNIT - I:

Introduction to energy sources: Energy sources and their availability - prospects of renewable energy sources.

#### UNIT - II:

Solar Cells: Solar cells for direct conversion of solar energy to electric powers - Solar cell parameter - Solar cell electrical characteristics - Efficiency - Single crystal silicon solar cells - Polycrystalline silicon solar cells - cadmium sulphide solar cells.

### **UNIT - III:**

Applications of solar energy: Solar water heating - space heating and space cooling -solar photo valtaics - agricultural and industrial process heat - solar distillation - solar pumping - solar furnace - solar cooking - solar green house.

# **UNIT - IV:**

Wind Energy: Base principles of wind energy conversion wind data and energy estimation - Base components of wind energy conversion systems (WECS) types of wind machines - Generating systems - scheme for electric generation - generator control - load control - applications of wind energy.

#### UNIT - V:

Energy from Biomass: Biomass conversion Technologies - wet and Dry process - Photosynthesis. Biogas Generation: Introduction - basic process and energetic - Advantages of anaerobic digestion - factors affecting bio digestion and generation of gas. Classification of Biogas plants: Continuous and batch type - the done and drum types of Bio gas plants - biogas from wastes fuel - properties of biogas - utilization of biogas.

#### **BOOKS FOR STUDY AND REFERENCE**

- 1. Kreith and Kreider, Principles of Solar Engineering, McGrew Hill Pub.,
- 2. A.B.Meinel and A.P.Meinal, Applied Solar Energy.,
- 3. M.P.Agarwal, Solar Energy, S.Chand & Co.,
- 4. S.P.Sukhatme, Solar Energy, TMH.,
- 5. G.D.Rai, Non-conventional Energy sources, Khauna Publications, Delhi.

#### STATISTICAL MECHANICS (M16PPH04)

#### **Unit – I Classical Statistical Mechanics**

Phase space and ensembles – Types of ensembles - Liouville's theorem – Statistical Equilibrium –Thermal Equilibrium- Elementary ideas of Partition Functions-Connection between Statistical and Thermodynamical quantities - Micro and macro states - Maxwell - Boltzmann distribution law - Distribution of energy and velocity - Principle of equipartition of energy - Boltzmann's entropy relation.

#### Unit – II Kinetic Theory

Binary collisions - Boltzmann transport equation and its validity - Boltzmann's H-theorem and its analysis – Poincare's theorem - Transport phenomena: Mean free path - Zero order approximation - Viscosity of a gas - Navier - Stokes equation - Application to Incompressible fluids.

#### **Unit – III Entropy and Thermodynamics**

Entropy - Principle of entropy increase – Entropy and Disorder– Change in Enrtopy for reversible and irreversible processes - Gibbs paradox – Resolution of the paradox – Sackur – Tetrode equation – Thermodynamic Potentials and Reciprocity relations – Nernst Heat Theorem.

#### **Unit – IV Quantum Statistics**

Ideal Bose Systems – Photon gas – Radiation pressure and density - Bose - Einstein condensation – Debye's model of solids: Phonon gas - Ideal Fermi Systems – Fermi energy – Mean energy of Fermions – Electron gas in metals - Thermionic emission - Pauli Para magnetism.

#### **Unit – V Advanced Topics in Statistical Mechanics**

Phase transition- Order of phase transitions-First and second order- Interaction of spin in Ferromagnetism- Weiss molecular field approximation—General formulism of Ising model - One dimensional Ising model - Fluctuations- Mean Square deviation- Brownian motion- Expression for Brownian motion- Fourier Analysis of random function: Weiner- Khinchine theorem.

# **BOOKS FOR STUDY AND REFERENCE:**

- 1. Elementary Statistical Mechanics Gupta and Kumar, Pragati Prakashan, Meerut, 8th Edition.
- 2. Statistical Mechanics B.K. Agarwal and M. Eisnor, New Age International Publishers, 2nd Edition.
- 3. Fundamentals of Statistical Mechanics B.B.Laud, New Age International Publishers, New Delhi, 2007.
- 4. Statistical Mechanics Kerson Huang, Wiley eastern Ltd., New Delhi, 1983.
- 5. Statistical and Thermal physics F. Reif, , McGraw Hill, International Edition, Singapore (1979)

#### **ADVANCED ELECTRONICS (M16PPH05)**

#### **Unit - I: SEMICONDUCTOR DIODES**

The continuity equation - Application of the continuity equation for an abrupt PN junction under forward and reverse bias - Einstein equation - Varactor diode - Schottky diode - Tunnel Diode - Gunn diode - Optoelectronic diodes - LASER diode, LED and photo diode.

#### **Unit - II : SPECIAL SEMICONDUCTOR DEVICES**

JFET- Structure and working - I -V Characteristics under different conditions – biasing circuits
- CS amplifier design - ac analysis - MOSFET: Depletion and Enhancement type MOSFFT UJT characteristics - relaxation oscillator - SCR characteristics - application in power control
DIAC,TRIAC.

#### **Unit - III: OPERATIONAL AMPLIFIER**

Operational amplifier characteristics - inverting and non-inverting amplifier -instrumentation amplifier - voltage follower - Integrating and differential circuits - log & antilog amplifiers - op amp as comparator - Voltage to current and current to voltage conversions - active filters : low pass, high pass, band pass & band rejection filters - Solving simultaneous and differential equations.

#### Unit - IV : OP-AMP APPLICATIONS (OSCILLATORS AND CONVERTORS)

Wien bridge, phase shift oscillators - triangular, saw-tooth and square wave generators - Schmitt's trigger - sample and hold circuits - Voltage control oscillator - phase locked loops. Basic D to A conversion: weighted resister DAC - Binary R-2R ladder DAC - Basic A to D conversion: counter type ADC - successive approximation converter - dual slope ADC.

#### **Unit - V: IC FABRICATION AND IC TIMER**

Basic monolithic IC's - epitaxial growth – masking - etching impurity diffusion -fabricating monolithic resistors, diodes, transistors, inductors and capacitors - circuit layout -contacts and inter connections - charge coupled device - applications of CCDs.

555 timer - description of the functional diagram - mono stable operation - applications of mono shots - astable operation pulse generation.

#### **BOOKS FOR STUDY AND REFERENCE**

- 1. T.F.Schubert and E.M.Kim, "Active and Nonlinear Electronics", John Wiley Sons, New York (1996).
- 2. L.Floyd, Electronic Devices, "Pearson Education" New York (2004)
- 3. Dennis Le Crissitte, Transitors, Prentice Hall India Pvt. Ltd (1963)
- 4. J.Milman and C.C. Halkias, Integrated Electronics, McGraw Hill (1972)
- 5. A. Mottershed, Semiconductor Devices and Applications, New Age Int Pub
- 6. M. Goodge, Semiconductor Device Technology Mc Millan (1983)
- 7. S.M.Sze, Physices of Semiconductor Devices, Wiley-Eastern Ltd.,
- 8. Milman and Taub, Pulse, digital and switching Waveforms, McGrew Hiil (1965)
- 9. Ben.G.Streetman, Solid state electronic devices, Printice Hall, Englewood cliffs, NJ (1999)
- 10. R.A.Gayakwad, Op-Amps & Linear integrated circuits, Printice Hall India Pvt. Ltd.(1999)

#### **ELECTROMAGNETIC THEORY (M16PPH06)**

#### **Unit - I : Electrostatics**

Coulomb's Law - Electric field intensity - Field due to point and continuous charges -Gauss' Law and its applications- Gauss's law and application - Electric potential - Electric field and equipotential plots. Electric field in free space, conductors, dielectric -Dielectric polarization - Dielectric strength - Electric field in multiple dielectrics - Molecular polarisability and electric susceptibility-Electrostatic energy in dielectric medium- Clausius - Mossotti equation Laplace and Poisson equations, boundary value problems.

#### **Unit - II : Magnetostatics**

Lorentz Law of force, magnetic field intensity - Biot-savart Law - Ampere's Law – Magnetic field due to straight conductors, circular loop, infinite sheet of current - Magnetic flux density (B) - B in free space, conductor, magnetic materials — Magnetization - Magnetic field in multiple media - Boundary conditions - Scalar and vector potential - Magnetic force — Torque — Inductance - Energy density — Magnetic circuits.

#### **Unit - III : Electrodynamic fields**

Faraday's laws, induced emf - Transformer and motional EMF - Forces and Energy in quasi-stationary Electromagnetic Fields - Maxwell's equations (differential and integral forms) - Displacement current - Relation between field theory and circuit theory. Vector and scalar potential - Gauge transformation - Lorentz gauge - Coulomb gauge Conservation laws for a system of changes - Poynting theorem.

#### **Unit - IV : Electromagnetic waves**

Generation - Electro Magnetic Wave equations - Wave parameters: velocity, intrinsic impedance, propagation constant - Electromagnetic waves in free space, dielectrics, and conductors; Reflection and refraction, polarization, Fresnel's Law, interference, coherence, and diffraction; Dispersion relations in plasma skin depth, Poynting vector Wave guides-Propagation of waves in a rectangular wave guide-inhomogeneous wave equation and retarded potentials field and radiation due to an oscillating electric dipole.

#### **Unit - V : Plasma physics:**

Defnition of plasma; Its occurrence in nature; Dilute and dense plasma; Uniform but time-dependent magnetic field: Magnetic pumping; Static non-uniform magnetic field: Magnetic bottle and loss cone; MHD equations, Magnetic Reynold's number; Pinched plasma; Bennett's relation; Qualitative discussion on sausage and kink instability.

#### **BOOKS FOR STUDY AND REFERENCE:**

- 1. Mathew N.O. Sadiku, 'Elements of Electromagnetics (Oxford University press Inc. First India edition, 2007)
- 2. Ashutosh Pramanik, Electromagnetism Theory and Applications (Prentice-Hall of India Private Limited, New Delhi, 2006)
- 3. J.A. Bittencourt, Fundamentals of Plasma Physics, Third edition, (Springer Publication, 2004)
- 4. David J Griffiths -Introduction to Electromagnetics- III Edition (Prantice Hall of India Pvt.Ltd.-New Delhi, 2000)
- 5. T.V.S Arun Murthy, Electromagnetic fields, (S. Chand, New Delhi, 2008)
- 6. Joseph. A.Edminister, Theory and Problems of Electromagnetics, Second edition, Schaum Series (Tata McGraw Hill,1993)
- 7. William. H. Hayt, 'Engineering Electromagnetics', (Tata McGraw Hill edition, 2001)
- 8. John R.Reitz-Foundations of Electromagnetic Theory-VI Edition (Narosa Publishing House, New Delhi, 2000)
- 9. K.L. Goswami, Introduction to Plasma Physics (Central Book House, Calcutta)

#### NANO SCIENCE AND TECHNOLOGY (M16PPHE05)

### **Unit - I : Basics of Nanotechnology**

Background to Nanotechnology - scientific revolutions - types of nanotechnology and nano machines - atomic structure molecules & phases - molecular and atomic size - surfaces and dimensional space - top down and bottom Nanoscale formation

#### **Unit - II : Nanocrystals**

Synthesis of metal Nanoparticles and structures - Background on quantum semiconductors - Background on reverse Miceller Solution - Synthesis of semiconductors - Cadmium telluroid nano crystals - Cadmium sulfide nano crystals - Silver sulfide nano crystals - Nano manipulator - Nano tweezes - Nanodots.

#### **Unit - III : Nano Tubes**

Types of nanotubes - formation of nanotubes - methods and reactants - arcing in the presence of cobalt - laser methods - ball milling - chemical vapour deposition methods -properties of nano tubes - plasma arcing - electro deposition - pyrolytic synthesis - Zeolites and templated powders layered silicates.

#### **Unit - IV: Characterization of Nanomaterials**

Scanning Electron Microscope: Theory - Instrumental setup and its application - Low KV SEM and its application - Low temperature SEM and its application - working of electron probe micro analysis and its application in elemental analysis - EDX spectra Important material systems - optical process in semiconductors - optical process in quantum wells - semiconducting optoelectronic devices - organic optoelectronic devices (qualitative).

#### Unit - V: Applications of Nanotechnology

Structural and Mechanical materials - Nan electronics - optoelectronic devices - LED - Applications - Colorants and Pigments - Nano - Lithography - Nanobiotechnology - DNA - Chips, DNA array devices, drug delivery systems.

- 1. Nanotechnology: Basic science and emerging technologies Mick Wilson, Kamali Kannagara, Geoff Smith, Michelle Simmons, Burkhard Raguse, Overseas Press (2005).
- 2. Amorphous and Nanocrystalline Materials: Preparation, Properties and Applications, A.Inoue, K.Hashimoto(Eds.,) (2000).
- 3. Introduction to Nanotechnology, Charles P. Poole, Frank J. Owens, Wiley Interscience (2003).
- 4. Fundamentals of Surface and Thin Film Analysis, Leonard C.Feldman and James W.Mayer.
- 5. Nanocomposite science and technology, Pulickel M. Ajayan, Linda S. Schadler, Paul V. Braun, Wiley VCH Verag, Weiheim (2003).
- 6. Quantum Heterostructures: Microelectronics and Optoelectronics, Vladimir Mitin
- 7. Smart Electronic Materials (Fundamentals and applications), Jasprit Singh
- 8. Nanostructures and Nanomaterials (Synthesis, Properties and Applications), Guozhong Cao.
- 9. Nanoelectronics and Information technology Edited by Rainer Weser.

# **CONDENSED MATTER PHYSICS (M16PPH07)**

# Unit - I: Crystallography and Bonding

Reciprocal lattices - Vector development of reciprocal lattice - Properties of the reciprocal lattice - Reciprocal lattice to BCC lattice and FCC lattice - Bragg's condition in terms of reciprocal lattice - Crystal diffraction-Neutron and electron diffraction - Brillouin zones. Binding energy of ionic crystals - Madelung constant - Cohesive energy - Compressibility and bulk modulus - Born Haber cycle. Crystals of inert gases - Vanderwaal's interaction - London interaction - Cohesive energy.

### **Unit - II : Lattice Vibrations and Thermal properties**

Vibration of monoatomic lattices - Lattices with two atoms per primitive cell Quantization of lattice vibrations - Phonon momentum - Inelastic scattering of neutrons by phonons. Lattice heat capacity - Einstein model - Density of mode in one-dimension and three- Dimension - Debye model of the lattice heat capacity -Thermal conductivity – Umklapp process.

### **Unit - III: Free Electron theory, Energy Bands and Semiconductor Crystals**

Energy levels and density of orbitals - Fermi-Dirac distribution - Free electron gas in three dimensions - Heat capacity of the electron gas -Electrical conductivity and Ohm's law -Motion in magnetic fields - Hall effect - Thermal conductivity of metals - Nearly free electron model - Electron in a periodic potential - Semiconductors - Band gap - Effective mass - Intrinsic carrier concentration.

### Unit - IV: Diamagnetism, Paramagnetism, Ferromagnetism and Antiferromagnetism

Langevin classical theory of Diamagnetism and Paramagnetism - Weiss theory- Quantum theory of Paramagnetism - Demagnetization of a paramagnetic salt - Paramagnetic susceptibility of conduction electrons - Hund's rules- Kondo effect. Ferroelectric order - Curie point and the exchange integral - Temperature dependence of saturation magnetization Magnons - Thermal excitation - Ferromagnetic order - Antiferromagnetic order - Antiferromagnetic Magnons - Ferromagnetic domains - Origin of domains - Coercive force and hysteresis.

# **Unit - V : Dielectrics, Ferroelectrics and Superconductivity**

Macroscopic electric field - Local electrical field at an atom - Dielectric constant and Polarizability - Classius-Mossotti equation - Ferroelectric crystals - Polarization Catastrophe - Ferroelectric domains. Occurrence of Superconductivity - Meissner effect - Thermodynamics of Superconducting transition - London equation - Coherence length - BCS theory - Flux Quantization - Type-I and Type-II Superconductors -Josephson tunneling effect- DC and AC Josephson effect -

SQUID - Recent developments in high Temperature Superconductivity- Application of superconductors.

- 1. Solid State Physics S.L.Gupta & Dr.V.Kumar.
- 2. Fundamentals of Solid State Physics Saxena Gupta and Saxena.
- 3. C. Kittel, Introduction to Solid State Physics, 5th Edition Wiley Eastern, New Delhi (1977)
- 4. N.W.Asherof and N.D.Mermin, Solid State Physics, Holt, Rinehart and Winston, International Edition, Philadelphia.
- 5. J.S.Blakemore, Solid State Physics, Second edition Cambridge University press, Cambridge, London (1974)
- 6. A. J. Dekker, Solid State Physics, Mac Millen, Madras (1971)
- 7. M. M. Woolfson, An Introduction to X-ray Crystallography, Vikas publishing Ltd. (1978)
- 8. Thomas P. Sheahen, Introduction to High-Temperature Superconductors, Plenum Press, New York (1994)
- 9. S. O. Pillai, Solid State Physics, New Age International (p) Ltd, New Delhi (1995).

# **QUANTUM MECHANICS – II (M16PPH08)**

# Unit - I : Approximation methods for Time dependent perturbation theory

Time dependent Perturbation theory - first order transitions - constant perturbation-transition probability: Fermi Golden Rule - Periodic perturbation –harmonic perturbation - adiabatic and sudden approximation. Semi-classical theory of radiation: Application of the time dependent perturbation theory to semi-classical theory of radiation - Einstein's coefficients - Absorption - induced emission-spontaneous emission - Einstein's transition probabilities - dipole transition - selection rules - forbidden transitions.

# **Unit -II: Scattering theory**

Kinematics of scattering process - wave mechanical picture- Green's functions - Born approximation and its validity -Born series - screened coulombic potential scattering from Born approximation. Partial wave analysis: asymptotic behavior - phase shift - scattering amplitude in terms of phase shifts - differential and total cross sections - optical theorem - low energy scattering- resonant scattering - nonresonant scattering-scattering length and effective range- Ramsauer Townsend effect - scattering by square well potential.

# **Unit - III : Relativistic quantum Mechanics**

Schrodinger relativistic equation- Klein-Gordan equation-charge and current densities - interaction with electromagnetic field- Hydrogen like atom - nonrelativistic limit- Dirac relativistic equation: Dirac relativistic Hamiltonian - probability density- Dirac matrices-plane wave solution - eigen spectrum - spin of Dirac particle - significance of negative eigen states - electron in a magnetic field - spin magnetic moment - spin orbit energy. Quantisation of the field Electromagnetic wave as harmonic oscillators -quantisation: classical E.M.wave -quantisation of fields oscillators- Photons-number operator - creation and annihilation operators of photons.

# **Unit - IV : Quantum theory of Atomic and Molecular structure**

Central field approximation: residual electrostatic interaction-spin-orbit interaction-Determination of central field: Thomas Fermi statistical method-Hartree and Hartree-Fock approximations (self-consistent fields) -Atomic structure and Hund's rule - effect of magnetic field in Hydrogen atom- weak and strong field-quadratic Zeeman effect. Molecules: Born -Oppenheimer approximation - An application: the hydrogen molecule Ion (H2+) - Molicular orbital theory: LCAO-Hydrogen molecule - Heitler- London method - energy level of the two atoms molecule- Van der waals force.

### **Unit - V: Methods of electronic structure calculation**

Hartree-Fock SCF method -formulation-Hartree-Fock approach- restricted and unrestricted HF calculations - Roothaans equations - selection of basis sets- electron correlation - Moller - Plesset many body perturbation theory - DFT - Semi-emphirical methods.

- 1. A Text book of Quantum Mechanics P. M. Mathews and K.Venkatesan; Tata McGraw -Hill Publications
- 2. Quantum Mechanics (2nd Edition)- V. K. Thankappan; New Age International (P) Ltd. Publication
- 3. Quantum mechanics Franz Schwabl; Narosa Publications.
- 4. Molecular Quantum mechanics (3rd Edition) P.W.Atkins and R.S.Friedman; Oxford University Press publication.
- 5. Quantum Mechanics Satya Prakash; Kedar Nath Ram Nath and Co. Publications.
- 6. Quantum Mechanics (5th Edition) Theory and Applications by A.K. Ghatak and Lokanathan Macmillan India Ltd Publication
- 7. Quantum Mechanics Leonard I. Schiff; McGraw-Hill International Publication.
- 8. Quantum Mechanics (3nd Edition)- E. Merzbacher; John Wiley Inter science Publications.
- 9. Quantum Mechanics -Vol.II Claude Cohen-Tannoudji, Bernard Diu, Franck Laloe John wiley Publications.

### MICROPROCTSSORS AND MICROCONTROLLERS (M16PPH09)

# **Unit - I Architecture and Programming of 8085**

Architecture of 8085 - Organization of 8085: Control, data and address buses - registers in 8085 - Addressing modes of 8085 - Instruction sets of 8085: Instruction types (based on number of bytes, based on operation), data transfer, arithmetic, logical, branching, stack and I/O instructions. Timing and sequencing: Instruction cycle, machine cycle, halt state, wait state -Timing diagram for opcode fetch, memory read and write cycles. Assembly language programming, Simple programs using arithmetic and logical operations - Interrupts: Maskable and non-maskable, hardware and software interrupts.

# **Unit - II Architecture of 8086**

Memory organization, Register organization: General purpose, index, pointer, segment registers and flags - Bus structure: data bus, address bus, effective & physical address and pipeling. Addressing modes of 8086: Register, immediate, direct and indirect addressing.

# **Unit - III Applications of Microprocessors**

Microprocessor based process control - closed loop control - open 100p control. Example for closed loop control - crystal growth control. Microprocessor based temperature monitoring systems - limit setting - operator panel - block diagram. Analog to digital conversion using ADC 0809 interfacing through PPI 8255 - Block diagram.

# **Unit - IV Architecture of Microcontroller 8051**

Introduction - comparison between microcontroller and microprocessors - Architecture of 8051- Key features of 8051 - memory organization - Data memory and program memory-internal RAM organization - Special function registers - control registers - I/O ports - counters and timers - interrupt structure.

### Unit - V Programming the Microcontroller 8051

Instruction set of 8051 - Arithmetic, Logical, Data move jump and call instructions, Addressing modes - Immediate, register, direct and indirect addressing modes - Assembly language programming - simple programs to illustrate arithmetic and logical operations (Sum of numbers, biggest and smallest in an array) - software time delay.

- 1. Aditya P.Mathur, Introduction to Microprocessors, Tata McGraw Hill Company, II edition.
- 2. Ramesh S.Gaonkar, Microprocessor Architecture, Programming and Application with 8085,Wi1ey Eastern.
- 3. Douglas V.Hall, Microprocessors and Interfaces, Tata McGraw Hill Company.
- 4. Aditya P.Mathur, Introduction to Microprocessors, Tata McGraw Hill Company, III edition.
- 5. Kenneta J.Ayala, The 8051 Microcontroller, Penram International India.
- 6. Lance A. Leventhal, Introduction to Microprocessors software, hardware, Programming, Prentice Hall of India.
- 7. Kenneth L. Short, Microprocessor and Programmed Logic, Prentice Hall of India.
- 8. Gilmore, Microprocessors, TMH Edition.

### COMMUNICATION ELECTRONICS (M16PPHE09)

# Unit - I : Antennas & Wave Propagation

Radiation field and Radiation resistance of a short dipole antenna -Grounded  $\lambda$  /4 Antenna-Ungrounded  $\lambda$  /2 Antenna- Antenna Arrays-Broadside and End Side Arrays-Antenna Gain-Directional High Frequency Antennas- Sky Wave Propagation-Ionosphere-Ecles & Larmor Theory-Magneto Ionic Theory-Ground Wave Propagation.

# **Unit - II: Pulse Code and Digital Modulation Techniques**

Sampling theorem - Low - Pass and Band - Pass signals, PAM, Channel BW for a PAM signal. Natural sampling. Flat-top sampling, Signal recovery through Holding, Quantization of signals, PCM transmission, quantization of noise, differential PCM Delta Modulation, Adaptive Delta modulation, CVSD. Signal to noise ratio in PCM and Delta Modulations - ASK, FSK, BPSK, DPSK, QPSK, QASK, MSK and QAM.

# Unit - III : Microwaves(Operation only)

Microwave Generation-Multicavity Klystron-Reflex Klystron-Magnetron-Travelling WaveTubes (TWT) and other Microwave Tubes-MASER-Gunn Diode.

Broad Band Communication Systems: Multiplexing - Frequency division - Time division. Short and medium Haul systems: Coaxial cables - fibre optic link - Microwave link - Tropospheric Scatter links.

Long Haul system: Submarine cables.

### Unit - IV: Radar and Television

Elements of a Radar System-Radar Equation-Radar Performance Factors-Radar Transmitting Systems- Radar Antennas-Duplexers-Radar Receivers and Indicators-Pulsed Systems-Other Radar Systems. Colour TV Transmission and Reception - Colour mixing principle - Colour Picture Tubes - Delta Gun picture tube - PIL colour picture tube - Cable TV, CCTV and Theatre TV.

# Unit - V: Optical Fibres

Propagation of Light in an Optical Fibre-Acceptance Angle-Numerical Aperture-Step and Graded Index Fibres-Optical Fibre as a Cylindrical Wave Guide-Wave Guide Equations-Wave Equations in Step Index Fibres-Fibre Losses and Dispersion-Applications. Satellite communication Orbital Satellites, Geostationary Satellites, Orbital Patterns, satellite system link models, satellite system parameters, satellite system link equation, Link budget. INSAT communications satellites.

- 1. Handbook of Electronics by Gupta & Kumar 2008 Edition
- 2. Electronic Communication System-George Kennedy & Davis -Tata McGraw Hill 4th edition 19889
- 3. Taub and schilling, "Principles of Communication Systems", Second edition, Tata McGraw Hill (1991)
- 4. Electronic Communications Dennis Roddy & Coolen , Prentice Hall of India, IV Edition, 1995
- 5. Wayne Tomasi, "Advanced electronics communication Systems", fourth Edition, Prentice Hall, Inc., (1998)
- 6. M. Kulakarni, "Microwave and Radar Engineering", Umesh Publications, 1998.
- 7. Monochrome and Colour TV R.R.Gulati.

# **NUCLEAR AND PARTICLE PHYSICS (M16PPH10)**

### **Unit - I: Nuclear Structure**

Distribution of nuclear charge - spin and magnetic moment - determination of nuclear mass - Binding Energy - Nuclear stability - Mass parabolas - Nuclear Shell model - Liquid drop model - Optical Model - Collective Model.

### **Unit - II: Nuclear Interactions**

Exchange forces - Yukawa's meson theory - Yukawa potential - Ground state of deuteron - Low energy n-p scattering - effective range - spin dependence and charge independence of nuclear forces.

#### **Unit - III: Nuclear Reactions**

Types of reactions and Energetics of nuclear reactions - conservation laws - Q Value - Scattering and reaction cross sections - Compound nucleus - Reciprocity theorem - Breit and Wigner Dispersion formula - stripping and pickup reactions.

# **Unit - IV : Radioactive Decays**

Alpha decay - Geiger - Nuttal law - Gamow's Theory - Neutrino hypothesis - Fermi theory of beta decay - Selection rules - Gamma decay - Selection rules - Internal conversion

# **Unit - V : Elementary Particles**

Types of interactions between elementary particles - Leptons - Hadrons - Mesons - Hyperons - Pions - Gell - Mann Okubo mass formula for octet and decaplet - SU(2) - SU(3) Multiplet - Quark model - Color and flavor - weak and strong interactions.

- 1. R.P. Roy and B.P. Nigam, Nuclear Physics, Age International Ltd, New Delhi, 2005.
- 2. B.L. Cohen, Concepts of Nuclear Physics, Tata McGraw Hill, New Delhi, 1983.
- 3. H.Semat, Introduction to Atomic and Nuclear Physics, Chapman and Hall, New Delhi, 1983.
- 4. W.S.C Williams, Nuclear and particle Physics Claredon Press, London, 1981.
- 5. K.S. Krane, Introductory Nuclear Physics, John wiley, New york, 1987.
- 6. S.B. Patel, Nuclear Physics: An introduction, Wiley Eastern, New Delhi, 1991.
- 7. D.C. Tayal, Nuclear Physics, Himalaya Publishing house, New Delhi, 2004.

# **MOLECULAR SPECTROSCOPY (M16PPH11)**

# **Unit - I : IR - Spectroscopy**

Principle and theory of Infrared spectroscopy - Far and Near IR absorption spectroscopy - Mid and Near IR reflectance spectroscopy - Photo acoustic IR spectroscopy - Dispersive IR spectrometer - IR Imaging - FT - IR spectroscopy - Vibrational frequencies and qualities analysis - sampling methods - Instrumentation- Applications.

# **Unit - II: Raman Spectroscopy**

FT Raman spectroscopy - degree of depolarization - structure determination using IR and Raman spectroscopy - Resonance Raman spectroscopy - Coherent anti - Stokes Raman spectroscopy - Inverse Raman and surface Enhanced Raman spectroscopy - principles, techniques and applications - non - linear Raman spectroscopy.

# Unit - III : Electronic Spectra : Florescence & Phosphorescence Spectroscopy

Electronic Excitation of Diatomic Species - Vibrational Analysis of Band Systems of Diatomic Molecules - Deslandre's Table - Intensity Distribution - Franck Condon Principle -Rotational Structure of Electronic Bands - Resonance and Normal Fluorescence - Intensities of Transitions - phosphorescence Population of Triplet State and Intensity - Experimental Methods - Applications of Florescence and Phosphorescence.

### Unit - IV : NMR & NQR Spectroscopy

NMR Spectroscopy: Quantum Mechanical and Classical Description - Bloch Equation - Relaxation Process - Experimental Technique - Principle and Working of High Resolution NMR Spectrometer - Chemical Shift NQR Spectroscopy: Fundamental Requirements - General Principle - Experimental Detection of NQR Frequencies - Interpretation and Chemical Explanation of NQR Spectroscopy

### **Unit - V : ESR & Mossabauer Spectroscopy**

ESR Spectroscopy : Basic Principles - Experiments - ESR Spectrometer - Reflection Cavity and Microwave Bridge - ESR Spectrum - Hyperfine Structure Mossabauer Spectroscopy : Mossabauer Effect - Recoilless Emission and Absorption - Mossabauer Spectrum - Experimental Methods - Hyperfine Interaction - Chemical Isomer Shift - Magnetic Hyperfine and electric Quadrupole Interaction

- 1. C.N. Banwell, Fundamentals of Molecular Spectroscopy. Tata MCGraw Hill (1972)
- 2. B.P. Straughan and Walkar, Spectroscopy Vol. 1, Chapman and Hall (1976)
- 3. B.P. Straughan and Walkar, Spectroscopy Vol. 2, Chapman and Hall (1976)
- 4. D.N.Sathyanarayana Vibrational Spectroscopy and Application New Age International Publications (2004)
- 5. G. Aruldas Molecular Structure and Spectroscopy (2001) Prentice Hall of India Pvt. Ltd. New Delhi
- 6. Raymond Chang, Basic Principles of Spectroscopy, McGraw Hill Koyakusha Ltd., (1980)
- 7. D.A. Long, Raman Spectroscopy, Mc Graw Hill, International Book Company.

### COMPUTATIONAL METHODS AND PROGRAMMING (M16PPH12)

# Unit - I: C++ programming

Constants, variables and their declarations - Input, output and comparison operators-if, if. else, switch, while, do-while, for, break statements- main, void, exit, swap functions- Arrays passing by value and passing by reference.

# **Unit - II : Curve fitting and interpolation**

Curve fitting: Method of least squares- Normal equations- Straight line fit- Exponential and power-law fits. Newton interpolation polynomial: Linear Interpolation- Higher-older polynomials- First- order divided differences-Gregory-Newton interpolation polynomials Lagrange interpolation - Truncation error.

### **Unit - III : Solutions of Linear and Nonlinear Equations**

Simultaneous linear equations: Gauss elimination method - Jordan's modification- Inverse of a matrix by Gauss- Jordon Method - Roots of nonlinear equations: Newton-Raphson method - Iterative rule - Termination criteria - Pitfalls - Order of convergence

# **Unit - IV: Numerical integration and Differentiation**

Newton-Cotes quadrate formula - Trapezoidal, Simpson's 1/3 and 3/8 rules - Errors in the formulas. Differentiation: First-order derivative:-Two and four-point formulas second – order derivative: Three and five-point formulas.

# **Unit - V: Numerical solution to ordinary Differential Equations**

First-order equations: Euler and improved Euler methods - Formulas- Local and global truncation errors -Fourth-order Runge-Kutta method-Geometric description of the formula-Errors versus step size -Second order equation- Euler methods and Fourth order Runge-Kutta method.

- 1. J.R. Hubbard, Programming with C++, McGraw-hill, New Delhi, 2006.
- 2. J.H. Mathews, Numerical Methods for Mathematics, Science and Engineering, Prentice-Hall of India, New Delhi, 1998.
- 3. M.K. Jain, S.R.K Iyengar and R.K.Jain, Numerical Methods for Scientific and Engineering Computation, New Age International, New Delhi, 1993.
- 4. S.D. Conte and C. Boor, Elementary Numerical Analysis, McGraw Hill, Singapore, 1981.

# MATERIALS SYNTHESIS AND CHARACTERIZATION (M16PPHE13)

#### Unit - I: Nucleation and Growth

The crystalline state - concept of crystal growth - historical review - Importance of crystal growth - crystal growth theory: classical theory - Gibbs - Thomson equation- kinetic theory of nucleation - Energy of formation of a nucleus - kinetics of thin film formation - Film growth - five stages - Ncleation theories - In corporation of defects and impurities in films -Deposition parameters and grain size - structure of thin films.

# **Unit - II : Growth Techniques**

Solution growth technique: low temperature solution growth: solution -Solubility -constant temperature bath a crystallizer- seed preparation and mounting - slow cooling and solvent evaporation methods. Gel growth technique: Principle - various types - structure of gel - Importance of gel - Experimental procedure - Advantage of gel method. Melt technique: Bridgman technique - czochralski technique - Experimental arrangement - Growth process. Vapous technique: physical vapour deposition - chemical vapour deposition (CVD) - chemical vapour transport.

# **Unit - III: Thin Film Deposition Techniques**

Thin films - Introduction to vaccum technology -deposition techniques – physical methods - resistive heating, electron beam gun and laser gun evaporation - sputtering: Reactive sputtering, radio frequency sputtering - chemical methods - spray pyrolysis - preparation of transport conducting oxides.

# **Unit - IV: Characterization Technique**

X-ray Diffraction (XRD) - power and single crystal - fourier transform infrared analysis - FT - Raman analysis - Elemential dispersive x-ray analysis (EDAX) - scanning electron microscopy (SEM) - UV -Vis Spectrometer Vickers micro hardness - Auger emission spectroscopy. Photoluminescence (PL) - UV -Vis -IR spectrometer- AFM- Hall effect - SIMS -

X-ray - photoemission spectroscopy (XPS) - dynamic light scattering - ellipsmety method.

# **Unit - V : Applications**

Micro electrochemical systems (MEMS) - optoelectronic devices: LED, LASER and solar cell - polymer films - Fabrication and characterization of thin film transistor, capacitor, resistor, inductor and FET - Sensor - quanum dot - Applications of ferromagnetic and super conducting films: Data storage, Giant magneto resistance (GMR).

- 1. K.Sangawal, Elementary crystal growth shan publisher, UK ,1994.
- 2. P.Santhana Ragavan, P.Ramasamy- Crystal Growth and processes. KRU publications. Kumbakonam(2000).
- 3. J.C.Brice, Crystal Growth Process, John wiley publications, NewYork (1996).
- 4. L I Maissel and R clang, Hand book of thin films Technology, Mc Graw Hill (1970).
- 5. J.L. Vossen and W.kern, Thin films process, Academic press,1978.
- 6. M.Ohring, The materials science of Thin Films, Academic press, 1992.
- 7. M.William and D.Steve, Instrumental Methods of analysis (CBS publishers) New Delhi. (1986).
- 8. H.H.Williard, L.L. Merritt.Methods, J.Dean, and F.A.Settle, Instrumental methods of analysis Sixth Edition. Cbs Publishers & distributors, Delhi (1986).
- 9. R.W.Berry, P.M.Hall and M.T.Harris, Thin Film Technology, Vn Nosrand (1968).
- 10. A.Goswami, Thin film Fundamentals , New Age International (P) Ltd. Publishers, New Delhi(1996).